首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

2.
Ultraviolet photoluminescence (PL) of LiB3O5 (LBO) crystals has been studied under selective excitation by photons in the vacuum ultraviolet and ultrasoft x-ray regions, including the K-absorption edges of the Li and B cations and O anion. Radiative recombination of electron-hole pairs was established to be the main channel of the intrinsic PL excitation at 4.2 eV. Features were observed in the PL excitation spectra near the lithium and boron K-absorption edges originating from excitation of the cation 1s core excitons. Experimental evidence of the multiplication of Li 1s excitons in LBO was obtained. It is shown that excitation of the O 1s core excitons does not affect the PL yield noticeably. The differences in the appearance of the Li, B, and O 1s excitons in the excitation spectra of the LBO ultraviolet PL are discussed.  相似文献   

3.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

4.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

5.
The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS) obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cooling in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the “freezing” temperature of the relaxation state (T f ≈ 182 K), field removal, and subsequent cooling in zero field (ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below T f , application of the same field, and FC to T = 10 K. The behavior of the P r FC (T) and P r ZFC (T) dependences is analyzed. In the field E < 2 kV/cm, the P r ZFC curves as functions of 1/T have a broad low-intensity peak in the region TT f , which vanishes in stronger fields, when the P r FC (1/T) curves intersect at TT f and have no anomalies. The difference in the behavior of P r ZFC (T) and P r FC (T) indicates the difference in the nature of NERS formed during ZFC and FC of the system upon a transition through T f . In the ZFC mode, NERS exhibits glasslike behavior; in the FC regime, features of the ferroelectric behavior even in the weak field. Analogous variations of P r ZFC (T) and P r FC (T) in a classical ferroelectric KDP are also given for comparison.  相似文献   

6.
The interpretation of diffraction spectra of ordered high-temperature phases of solid solutions and strongly nonstoichiometric compounds is discussed. It has been shown that variations of the intensities of superstructure reflections, which cannot be explained within simple ordering models, can be due to the superposition of superstructures with different symmetries in the matrix of the basis crystal structure. Using an example of atom–vacancy ordering in TiO1.0 titanium monoxide, a model of the order–order transition state formed by the superposition of low-temperature monoclinic (space group A2/m (C2/m)) and high-temperature cubic (space group Pm3?m) M5X5 superstructures has been proposed. It has been shown that the transition state is thermodynamically equilibrium and should be implemented instead of the M5X5 cubic superstructure. The transition state model can be considered as an M(5–i)X(5–i) superstructure (i = 1, 14/18, 11/18) with the monoclinic symmetry (space group P1m1).  相似文献   

7.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

8.
In the multiquantum approximation of the orthogonal scheme, specific calculations for the energies and radii of the 4 8 Be nucleus are performed with allowance for all states characterized by the λ=[44] Young diagram, the quantum numbers Kmin and Kmin+2 of the O(3(A?1)) group, and the quantum numbers E=K+2N (N≤9) of the U(3(A?1)) group. The convergence of the results with respect to the extension of the basis is studied, and the structure of relevant wave functions is revealed. The results of these calculations are compared with the results obtained in the analogous approximation of the unitary scheme.  相似文献   

9.
The thermoelectric properties of n-Bi2 ? x Sb x Te3 ? y ? z Se y S z solid solutions are studied in the temperature range 300–550 K. It is shown that an increase in the parameter β determining the figure-of-merit Z of the material is observed in compositions with the optimally related effective mass of the density of states m/m 0, the carrier mobility μ0, and the lattice thermal conductivity κ L . Within the temperature range 300–350 K, the parameter β and the figure-of-merit Z are found to increase in solid solutions with substitutions in both bismuth telluride sublattices Bi → Sb and Te → Se, S (x = 0.16, y = z = 0.12) for optimum electron concentrations. An increase in the electron concentration and substitutions of atoms only in the tellurium sublattice bring about an increase in the β parameter and the value of Z at higher temperatures. Within the range 350–450 K, the parameters β and Z are observed to increase in a solid solution with a low content of substituted atoms in the tellurium sublattice Te → Se, S for y = z = 0.09 and, at higher temperatures up to 550 K, in compositions with tellurium substituted by selenium only, with increasing content of substituted atoms.  相似文献   

10.
Thin films of M2CdI4 ferroelectrics (M=Cs, Rb) of orthorhombic structure were synthesized, and their electronic optical spectrum was studied. It was established that both compounds belong to direct-gap dielectrics and that their low-frequency excitons are localized on a sublattice made up of (CdI4)2? tetrahedra. The temperature dependence of the exciton band parameters was studied for Cs2CdI4 within the temperature interval 90–420 K. The phase transitions occurring in this interval manifest themselves as breaks in the temperature behavior of the band spectral positions and weak peaks in the halfwidth and oscillator strength.  相似文献   

11.
The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M FC and M ZFC, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe2O4/CoFe2 composites with different relative content of CoFe2. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T irr. For the sample with less CoFe2, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad peak at an intermediate temperature T 2 below T irr , and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the ?d(M FC ? M ZFC)/dT curves of the sample with more CoFe2, besides a broad peat at an intermediate temperature T 2, a rapid rise around the low temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
Graphical abstract CoFe2O4/CoFe2 composites with different relative content of CoFe2 were prepared by reducing CoFe2O4 in H2 for 4 h (S4H) and 8 h (S8H). The temperature-dependent FC and ZFC magnetizations, i.e., M FC and M ZFC, under different magnetic fields from 500 Oe to 20 kOe have been investigated. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at field-dependent irreversible temperature T irr. For the S4H sample, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad and field-dependent relaxing peak at T 2 below T irr (figure a), and the moments were suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the S8H sample, it exhibits the reentrant spin-glass state around 50 K, as evidenced by a peak in the M FC curve (inset in figure b) and as a result of the cooperative effects of the random anisotropy of CoFe2O4, exchange–spring occurring at the interface of CoFe2O4 and CoFe2 together with the inter-particle dipolar interaction (figure c); in ?d(M FC ? M ZFC)/dT curves, besides a broad relaxing peat at T 2, a rapid rise around the low-temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
  相似文献   

12.
The absorption and luminescence spectra of neodymium in a binary inorganic solvent—phosphorus oxychloride-antimony pentachloride—are measured. The spectra are analyzed in terms of the Judd-Ofelt theory. The Judd-Ofelt parameters Ωλ, the oscillator strengths of the main absorption bands, the spontaneous emission probabilities, the radiative lifetime, the luminescence quantum yields, and the stimulated emission cross sections for the 4 F 3/24 I 11/2 laser transition are calculated.  相似文献   

13.
Ginzburg-Landau (GL) theory is used to study surface superconductivity for UPt3 for various order parameter symmetries (OPS), andH c3 is found for all principal directions of the surface normal\(\hat n\) and the field [1]. Assuming specular reflection, and allowing for reorientation of the antiferromagnetic symmetry breaking field in the models withE 1g ,E 2g ,E 1u , orE 2u symmetry, the experiments of Keller et al. [2] with\(\hat n = \hat a\) can be qualitatively explained for all OPS except possiblyA 1u B 1u . The implied GL parameters then predict qualitatively different and OPS dependent behavior for\(\hat n = \hat a^* \) and\(\hat n = \hat c\). Study ofH c3 for these surfaces would give strong clues about the OPS of UPt3.  相似文献   

14.
The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3Hσ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3Hσ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3dc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/n) into the “dielectric” α modification (space group P21/n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range TSIC = 430–540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at TSIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and ΔHσ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.  相似文献   

15.
The shape and relative intensity of the group of the Kα5–8 satellites (radiative transitions KL 2, 3 2 )-L 2, 3 3 of Si atoms are experimentally studied upon photoabsorption near and far from the KL 2, 3 2 ionization threshold. The satellites were excited near the ionization threshold by lines of the characteristic L spectrum and bremsstrahlung radiation from Nb and Mo anodes and far from the threshold by the L spectrum and bremsstrahlung radiation from an Ag anode and by monochromatized Kα1, 2 radiation from a Ti anode. It is established that the probability P(L 2, 3 2 ) of formation of two additional 2p vacancies during KL 2, 3 2 photoabsorption of Si atoms near the energy threshold is by a factor of 1.5 lower than that during photoionization in a more distant energy region beyond the threshold. At the same time, the P(L 2, 3 2 )/P(L 2, 3) ratio remains invariable for the absorbed photons throughout the energy range studied. It is demonstrated that, as the KL 2, 3 2 ionization threshold is approached, an intensity redistribution occurs among the components of the group of the Kα5–8 lines, which reflects a decrease in the excitation cross section ratio σ(4 P)/σ(2 P) of the 4 P and 2 P terms of the KL 2, 3 2 configuration. A conclusion is drawn that the effects of suppression of the generation of P terms of higher multiplicity during the KL 2, 3 and KL 2, 3 2 near-threshold photoionizations are of a common nature.  相似文献   

16.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

17.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

18.
In this proceeding, we present our recent work on decay behaviors of the Pc hadronic molecules, which can help to disentangle the nature of the two Pc pentaquark-like structures. The results turn out that the relative ratio of the decays of P c + (4380) to \({\bar D *}{\Lambda _c}\) and Jp is very different for Pc being a \({\bar D *}{\Sigma _c}\) or \(\bar D\Sigma _c *\) bound state with \({J^P} = \frac{{{3 - }}}{2}\) And from the total decay width, we find that Pc(4380) being a \(\bar D\Sigma _c *\) molecule state with \({J^P} = \frac{{{3 - }}}{2}\) and Pc(4450) being a \({\bar D *}{\Sigma _c}\) molecule state with \({J^P} = \frac{{{5 + }}}{2}\) is more favorable to the experimental data.  相似文献   

19.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

20.
High-frequency (HF) conductivity in systems with a dense (with a density of n = 3 × 1011 cm?2) array of self-organized Ge0.7Si0.3 quantum dots in silicon with different boron concentrations nB is determined by acoustic methods. The measurements of the absorption coefficient and the velocity of surface acoustic waves (SAWs) with frequencies of 30–300 MHz that interact with holes localized in quantum dots are carried out in magnetic fields of up to 18 T in the temperature interval from 1 to 20 K. Using one of the samples (nB = 8.2 × 1011 cm?2), it is shown that, at temperatures T ≤ 4 K, the HF conductivity is realized by the hopping of holes between the states localized in different quantum dots and can be explained within a two-site model in the case of
, where ω is the SAW frequency and τ0 is the relaxation time of the populations of the sites (quantum dots). For T > 7 K, the HF conductivity has an activation character associated with the diffusion over the states at the mobility threshold. In the interval 4 K < T < 7 K, the HF conductivity is determined by a combination of the hopping and activation mechanisms. The contributions of these mechanisms are distinguished; it is found that the temperature dependence of the hopping HF conductivity approaches saturation at T* ≈ 4.5 K, which points to a τ0 ≤ 1. A value of τ0(T*) ≈ 5 × 10?9 s is determined from the condition ωτ0(T*) ≈ 1.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号