首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical method for investigating the inter-relation between the electronic and the molecular structures of a 3d5 ion in a tetragonal ligand-field has been established on the basis of a 252×252 complete energy matrix. By means of this method, the local structure of the Fe3+-V cd and Fe3+-Li+ systems in RbCdF3:Fe3+ and CsCdF3:Fe3+ crystals are determined by the experimental EPR spectrum. Our calculation show that the local lattice structure around an octahedral Fe3+ center has a compression distortion along the crystalline axis in RbCdF3 as well as in CsCdF3 crystals, and that the compression magnitude of a tetragonal Fe3+-Li+ system is larger than that of the Fe3+-V cd system. This may be ascribed to the fact that a Fe3+ ion replaces a Cd2+ ion and a Li+ ion substitutes for another Cd2+ ion next to the Fe3+ ion in the Fe3+-Li+ system, and the Li+ ion will shift to the Fe3+ ion, which pushes the F1 ion toward the Fe3+ ion. Using this method, the experimental EPR parameters , and are also interpreted simultaneously.  相似文献   

2.
Blue-emitting europium-ion-doped MgSrAl10O17 phosphor, prepared using the combustion method, is described. An efficient phosphor can be prepared by this method in a muffle furnace maintained at 500 °C in a very short time of few minutes. The phosphor is characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. Photoluminescence (PL) spectra revealed that europium ions were present in divalent oxidation state. The thermoluminescence (TL) glow curve shows two peaks at around 178 and at 354 °C. The defect centres formed in the phosphor are studied using electron spin resonance (ESR). The ESR spectrum indicates the presence of Fe3+ ions in the non-irradiated system. Irradiated MgSrAl10O17:Eu exhibits lines due to radiation-sensitive Fe3+ ion and a defect centre. The centre is characterized by an isotropic g-value of 2.0012 and is assigned to a F+ centre. The radiation-sensitive Fe3+ ion appears to correlate with the main TL peak at 178 °C. During irradiation an electron is released from Fe2+ and is trapped at an anion vacancy to form F+ centre. During heating, an electron is liberated from the defect centre and recombines with Fe3+ emitting light.  相似文献   

3.
研究了Fe3+离子在钠-硼玻璃中的顺磁共振。在表观g=4.27处,有一条尖锐的大致对称的共振线。实验结果表明Fe3+离子代替接触二个钠离子的[BO4]四面体中的硼离子位置。  相似文献   

4.
The electronic structure of Fe3+ was studied in a mutant that has been modified to bind manganese or iron at a site corresponding to the manganese-binding site of photosystem II (Kálmán et al., Biochemistry 45:13869–13874, 2006). Using electron paramagnetic resonance spectroscopy, the presence of the oxidized state of the bacteriochlorophyll dimer, P·+, was detected in the light when no metal was added. When iron was bound to the modified reaction centers in the presence of bicarbonate, the contribution of P·+ was greatly reduced and a signal characteristic of Fe3+ was evident. To characterize the electronic structure of this ferric ion, the electron paramagnetic resonance spectrum was measured at X-band at temperatures from 4 to 200 K. The major contribution to the spectrum at 4 K is from Fe3+ with a spin 3/2 in a rhombic coordination and E/D ratio of 0.1914 and g eff values of 6.0, 2.9, and 2.0. As the temperature increases from 4 to 200 K, the signal shifts, with the central g eff value changing from 2.9 to 2.2. This change with temperature may result from alterations in the interaction with the bicarbonate coordinated to the iron as the temperature increases.  相似文献   

5.
A nanosensor, based on 8-hydroxyquinoline functionalized graphene oxide, was developed for the fluorescence detection of Zn2+. It showed high selectivity and sensitivity for Zn2+ion in aqueous solution over other metal ions such as Li+, Na+, Ca2+, Mg2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Pb2+, Fe2+, Fe3+and Cr3+. Due to the linearity of the emission intensity toward Zn2+ concentration, fluorescent technique could be used for the detection of Zn2+ ion even at very low concentrations.  相似文献   

6.
The cation distribution in spinel-related titanium-substituted lithium ferrite, Li0.5+0.5xFe2.5−1.5xTixO4 has been explored using interatomic potential and ab initio calculations. The results suggest that the cation distribution with Ti4+ substituting for Fe3+ on octahedral B sites and excess Li+ substituting for Fe3+ on tetrahedral A sites is stabilised by the formation of clusters of two octahedrally coordinated Ti4+ ions and one tetrahedrally coordinated Li+ ion linked through a common oxygen.  相似文献   

7.
We studied by Mössbauer spectroscopy the Na0.82CoO2 compound using 1% 57Fe as a local probe which substitutes for the Co ions. Mössbauer spectra at T=300 K revealed two sites which correspond to Fe3+ and Fe4+. The existence of two distinct values of the quadrupole splitting instead of a continuous distribution should be related with the charge ordering of Co+3, Co+4 ions and ion ordering of Na(1) and Na(2). Below T=10 K part of the spectrum area, corresponding to Fe4+ and all of Fe3+, displays broad magnetically split spectra arising either from short-range magnetic correlations or from slow electronic spin relaxation.  相似文献   

8.
The paper deals with optical and electronic properties of the aluminophosphate glasses containing Fe–Mn and Fe–Cr ion pairs in different concentration. The influence of the mixed alkali ions over the electronic properties has been investigated. The optical behavior (optical transmission) of the glass samples has been studied by UV-VIS spectroscopy and the refractive index dependency on wavelength has been discussed. The transmission spectra show features specific for the doping transition ions (TM), revealing different oxidation states of iron (Fe2+/Fe3+), manganese (Mn2+/Mn3+) and chromium (Cr3+/Cr6+) in the vitreous network. Mössbauer spectroscopy offers information regarding the TM oxidation states, redox processes and the iron coordination symmetry in the vitreous network. In the case of Fe–Mn doped glasses, the percentage of Fe2+ is about 40% and a doubled iron content leads to an increasing of Fe2+ percentage up to 53%. The replacing of lithium ions by natrium ions (mixed alkali effect) provides an increasing of the Fe2+ percentage up to 56%. The occurrence of the tetrahedral or octahedral symmetry of Fe2+ ions bonded by O2? ions depends on the transition ion nature and Li+/Na+ ratio. Infrared absorption spectra of the pair transition ions-doped aluminophosphate glasses reveal optical phonons specific for the phosphate glass matrix.  相似文献   

9.
Photo-sensitive electron spin resonance of the 3d7-ions Fe+, Co2+, Ni3+ has been detected and analysed in GaP, GaAs and InP. For GaP : Ni3+, hyperfine interaction with the four nearest P31-ligands could be resolved.  相似文献   

10.
An electron paramagnetic resonance study of Fe3+-doped cesium chloride single crystals was carried out at room temperature. Three sites are observed. The spin Hamiltonian parameters were determined from the angular variation of the observed resonance lines. The hyperfine structure is observed due to the presence of Fe57 centers. At site I, Fe3+ enters the lattice substitutionally, replacing Cs+ in the cubic symmetry of the crystal, whereas at sites II and III, Fe3+ enters the lattice interstitially. The local site symmetry of Fe3+ in the host lattice is considered to be orthorhombic. An optical absorption study of the crystal was also performed at room temperature. The observed bands were assigned and the Racah inter-electronic repulsion parameters (B and C) and the cubic crystal field splitting parameter (Dq) were determined. On the basis of EPR and optical data, the nature of the metal–ligand bonding in the crystal was determined. The crystal field parameters were evaluated using the superposition model and then used in the microscopic spin Hamiltonian and perturbation equations to determine the zero-field splitting parameters (ZFSPs) theoretically for all sites observed. The theoretical ZFSPs are in good agreement with the experimental values.  相似文献   

11.
By analyzing the EPR spectra of Fe3+ ion in the fluorinde glasses, the local lattice structures around impurity Fe3+ ion in MF3:Fe3+ (M=Al, Ga) systems have been studied by means of diagonalizing the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for a d5 configuration ion in a trigonal ligand-field. Both the second-order and fourth-order EPR parameters D and (aF) are taken simultaneously in the structural investigation. The results indicate that the local lattice structure around octahedral Fe3+ center has an expansion distortion for Fe3+ in MF3:Fe3+ (M=Al, Ga). The expansion distortion may be ascribed to the fact that the radius of Fe3+ ion is larger than that of Al3+ ion and Ga3+ ion, and the Fe3+ ion will push the fluoride ligands upwards and downwards, respectively. The local lattice structure parameters R=1.927 A, θ=55.538° for Fe3+ in AlF3:Fe3+ and R=1.931 A, θ=56.09° for Fe3+ in GaF3:Fe3+ are determined, respectively, and the EPR spectra of the MF3:Fe3+ (M=Al, Ga) systems are satisfactorily explained.  相似文献   

12.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

13.
The NMR spectra of57Fe in Gd: YTG polyeryslallaline samples were measured between liquid-helium and room temperatures. In spectra of57Fe on tetrahedral sites, beside the main line, weaker and broader peak at higher frequencies appears. It can be decomposed in to the three satellites corresponding to Fe3+ ion with one Gd3+ ion in the nearest (two satellites) and next nearest dodecahedral site. The temperature dependence of the stellite resonance frequency indicates, that the part of the transferred hyperfine field on57Fe with the Gd3+ in the nearest c-site depends on the magnetic moment of Gd3+ ion. The resonance frequency of the satellite corresponding to the57Fe with Gd3+ in the next nearest c-site follows the temperature dependence of the dipolar field, the change of the transferred field is small.  相似文献   

14.
A photocontrolled resonance decrease in microhardness, which is due to the application of mutually perpendicular static and microwave fields, in γ-irradiated KCl:Fe crystals has been revealed. It has been found that the magnetic plasticity of unirradiated γ-KCl:Fe crystals is due to the resonance effect of magnetic fields on two types of impurity centers: first, centers containing Fe2+ c ion-vacancy pairs and, second, centers containing Fe+ ions. The illumination of γ-KCl:Fe crystals with F-light (with a wavelength of λ = 500–600 nm) is accompanied by rearrangement of the spectrum of electron paramagnetic resonance detected by a change in microhardness. The effect of F-light on the spectrum of magnetic resonance plasticity is manifested as the suppression of the spectra of Fe2+ c ions with effective g-factors of 7.0 and 3.5 due to their recombination with F-electrons and reconstruction to Fe+ centers with g-factors of 2.2 and 4.1.  相似文献   

15.
Electrons with abnormally high energies of up to 16 keV are detected from an iron target irradiated by ions (H+, Fe+, Fe2+, Fe3+) with energies ranging from 20 to 100 keV from the plasma of a high-power femtosecond laser pulse with an intensity of 1016 J/(s cm2). These electrons indicate that the energy of an incident ion is almost completely transferred to an electron knocked out of the target. In a range of 6–16 keV, the spectrum of electrons knocked out of the K shell of iron atoms by protons with an energy of 22 ± 2 keV is quasi-exponential with an exponent of 4 keV. For 8-keV electrons, the double differential cross section for ionization by such protons is estimated as 10?7 b/(eV sr).  相似文献   

16.
The defect structure of lithiated tin- and titanium-doped α-Fe2O3 has been assessed using interatomic potential calculations. Of the models considered for lithiation, a model in which Li+ occupies an interstitial site balanced by the reduction of Fe3+ to Fe2+ on an Fe3+ site was found to be more favourable than the substitution of Li+ on an Fe3+ octahedral site balanced by an O2− vacancy. Insertion of lithium into the interstitial site between two adjacent M4+ ions was particularly favourable. The calculated lattice parameters decrease on lithiation as has been observed experimentally.  相似文献   

17.
NMR of57Fe is studied in a number of (MxY3–x) Fe5O12 garnets for small concentrations of M (M is either trivalent RE ion –Ho 3+, Gd 3+, Nd3+, Pr 3+, La 3+ or Bi 3+ ion). Beside the main resonance lines, the satellites were observed, which correspond to those Fe, in vicinity of which the impurity M is located. After correcting for the dipolar field, the field corresponding to the change of the transferred hyperfine interaction in M3+–O2–-Fe3+ vs. Y3+–O2–-Fe3+ triad was deduced from the satellites splitting. The analysis of the results indicates that the observed change in the transferred hyperfine field is mainly connected with the transfer of electrons between M3+ and Fe3+ ions and not with the local deformation around the impurity.  相似文献   

18.
The electron paramagnetic resonance (EPR) of the valence-fluctuating semiconductor SmB6 doped by 1 at % Fe is studied. The EPR measurements are performed on a SmB6 single crystal in a temperature range of 1.6–300.0 K. A number of resonance lines whose g factors indicate the presence of iron ions in the Fe0, Fe+, Fe2+, and Fe3+ states have been detected. The iron ions are ferromagnetically ordered below a Curie temperature T = 100 K, and this ordering can be caused by the exchange interaction of impurity ions due to matrix polarization (a similar mechanism is observed in PdFe alloys). This exchange interaction is estimated to be significantly higher than that in PdFe; this fact can result from a very high density of states in the narrow f band, which is characteristic of a valence-fluctuating material.  相似文献   

19.
Optical absorption, EPR, Infrared and Raman spectral studies have been carried out on natural clinochlore mineral. The optical absorption spectrum exhibits bands characteristic of Fe2+ and Fe3+ ions. A band observed in the NIR region is attributed to an intervalence charge transfer (Fe2+-Fe3+) band. The room temperature EPR spectrum of single crystal of clinochlore mineral reveals the dominance of Fe3+ ion exhibiting resonance signals at g=2.66; 3.68 and 4.31 besides one isotropic resonance signal at g=2.0. The EPR studies have been carried out for a polycrystalline sample in the temperature range from 103 to 443 K and for a single crystal of clinochlore mineral in the temperature range 123-297 K. The number of spins (N) participating in resonance at g=4.3 signal of the single crystal of clinochlore mineral has been calculated at different temperatures. The paramagnetic susceptibility (χ) is calculated from the EPR data at different temperatures for single crystal of clinochlore mineral. The Curie constant and Curie temperature values are evaluated from 1/χ versus T graph. The infrared spectral studies reveal the formation of Fe3+-OH complexes due to the presence of higher amount of iron in this mineral. The Raman spectrum exhibits bands characteristic of Si-O-Si stretching and Si-O bending modes.  相似文献   

20.
Photoluminescence spectra measured for pristine ruby and its two irradiated samples with Fe3+ ion show R1, R2, N lines and a broad band. Decrease in intensities of these features is observed with irradiation of Fe3+ ion in ruby. Progressive structural changes and modifications on surface of irradiated rubies with Fe3+ ion have been observed by atomic force microscopy. Decrease in intensities is discussed in terms of pair formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号