首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The A-exciton series in the absorption spectra of β-ZnP2 monoclinic zinc diphosphide samples is investigated at different directions of the wave vector and different polarization states of radiation. It is shown that the oscillator strengths determined for the observed transitions are adequately described by the relationship F n n?3 characteristic of S-type exciton states. The assumption is made that the A-exciton series is associated with the partially allowed dipole transitions to nS states of the orthoexciton with Γ 2 ? (x) symmetry at m s =0. These states are mixed, to a first approximation, with nS states of the Γ 2 ? (z) singlet exciton due to the spin-orbit 2 interaction and are split off by the long-range (nonanalytical) part of the exchange interaction. The Fano antiresonances arise in the absorption spectra at resonances of the A-exciton series when the radiation vector E (or the induction vector D) has a component along the crystallographic axis c. These antiresonances are induced by the configurational interaction of discrete exciton states of the A series with the continuum of the exciton-phonon spectrum due to indirect transitions to the 1S band of the singlet exciton with phonon emission.  相似文献   

2.
Scattering of an exciton polariton by impurity centers at low temperatures has not been investigated comprehensively in spite of its significant role in processes accompanying Bose–Einstein condensation of an exciton polariton. For studying the peculiarities of the interaction of an exciton polariton with impurity centers, we have studied the integrated absorption of the ground state (n 0 = 1) of the exciton in GaAs in thin (micrometer-thick) wafers with an appreciable optical transmission. Comparative analysis of the transmission in the vicinity of the exciton resonance performed on 15 samples of crystalline GaAs wafers with different concentrations N of impurity has revealed an unexpected regularity. The value of N increases by almost five decimal orders of magnitude, while the normalized spectrally integrated absorption of light exhibits a slight increase, following the power dependence N m on the concentration, where m = 1/6. It has been shown that this dependence indicates the diffusion mechanism of propagation of the exciton polaritons through the bulk of the semiconductor, which is present along with the ballistic propagation of light through the sample.  相似文献   

3.
Nonlinear absorption of 30-ps light pulses with λ = 560 nm in AgBr nanocrystals is experimentally studied in the range of intensities 108–1010 W/cm2. The results of a theoretical analysis show that the absorption is related to direct interband n-photon transitions. With increasing light intensity j, the number n increases and the region of the k-space changes for the transitions predominantly contributing to the absorption. It is shown that, due to specific features of the AgBr electronic band structure, the probabilities of two-photon transitions for the light at λ = 560 nm are anomalously low, while those of four-photon transitions are anomalously high. In addition, the increase in the two-photon transition rate with increasing intensity is blocked at j ? 108 W/cm2 due to the resonant optical Stark effect and due to a gap arising in the band spectrum, rearranged because of the interaction with light.  相似文献   

4.
The luminescence excitation spectra of localized excitons in GaSe0.85Te0.15 solid solutions have been investigated at the temperature T = 2 K. It has been shown that the excitation spectra of excitons with the localization energy ε > 10 mV exhibit an additional maximum M E located on the low-energy side of the maximum corresponding to the free exciton absorption band with n = 1. It has been found that the shift in the position of the maximum M E in the excitation spectrum with respect to the energy of detected photons increases as the energy of detected photons decreases, i.e., with an increase in the localization energy of excitons. Under the resonant excitation of localized excitons by a monochromatic light from the region of the exciton emission band, in the exciton luminescence spectrum on the low-energy side from the excitation line, there is also a maximum of the luminescence (M L ). The energy distance between the position of the excitation line and the position of the maximum in the luminescence spectrum increases with a decrease in the frequency of the excitation light. The possible mechanisms of the formation of the described structure of the luminescence excitation and exciton luminescence spectra of GaSe0.85Te0.15 have been considered. It has been concluded that the maximum M E in the excitation spectrum and the maximum M L in the luminescence spectrum are attributed to electronic–vibrational transitions with the creation and annihilation of localized excitons, respectively.  相似文献   

5.
Lately, the yellow series of P-excitons in cuprous oxide could be resolved up to the principal quantum number n = 25. Adding a magnetic field, leads to additional confinement normal to the field. Thereby, the transition associated with the exciton n is transformed into the transition between the electron and hole Landau levels with quantum number n, once the associated magnetic length becomes smaller than the related exciton Bohr radius. The magnetic field of this transition scales roughly as n–3. As a consequence of the extended exciton series, we are able to observe Landau level transitions with unprecedented high quantum numbers of more than 75.  相似文献   

6.
We study the spectrum of the yellow exciton series in crossed electric and magnetic fields. The electric field, applied along the optical axis, tilts the Coulomb potential between electron and hole, so that at sufficiently high fields exciton dissociation becomes possible, roughly when the electric dipole interaction energy exceeds the binding energy of an exciton state with principal quantum number n. For an applied voltage of U = 20 V all excitons above n = 6 are dissociated. Additional application of a magnetic field normal to the optical axis introduces magnetic confinement, due to which above a threshold field strength around B = 2.5 T the exciton lines re-emerge. The complex dispersion with increasing fields suggests quantum chaotic behavior in this crossed field configuration, so that the search for exceptional points may be promising.  相似文献   

7.
The relation between the effective ordinary refractive index n* = (n o n e )1/2 of a quasi-two-dimensional polydomain uniaxial film of a conjugated polymer F8BT in the visible transparency region and the refractive indices (n o,e ) of uniaxial domains with the optical axes randomly oriented in the plane of the film has been confirmed experimentally. The permissible interval of variations in n* has been established and a strong spectral dispersion of this interval near the long-wavelength electronic absorption band of the film has been demonstrated.  相似文献   

8.
9.
A study of the spectrum of nonlinear two-photon and two-step absorption in NiO single crystals, carried out in the energy region ?ω1 + ?ω2 = 2.45–4.575 eV, showed it to have a complex shape and consist of very strong peaks (from 0.05 to 2.7 cm/MW). Within the energy interval 2.45–3.3 eV, the spectrum is due to d-d transitions in the Ni2+ ion. The band gap width was determined to be E g =3.466 eV. The spectral features seen above this energy originate from interband transitions from three valence subbands to the conduction band bottom.  相似文献   

10.
The upper critical field H c 2 (Hc) of the two-band superconductor MgB2 is studied as a function of the residual resistivity ρn. It is found that the superconductor follows the standard trend: the slope-dHc2/dT of the temperature dependence of Hc2(T) increases with the number of defects. The upper critical field in the clean limit is found, and direct estimations of the parameters of carriers in the 2D σ band (including the Fermi velocity and the coherence length) are made. The contribution of the electron scattering to the magnitude of Hc2 is determined, and the mean free path of electrons in samples with various defect concentrations is estimated. The density of states of σ electrons at the Fermi level is calculated using the dependence of the slope-dHc2/dT on ρn and a band structure model. It is impossible to estimate this density of states directly, because the upper critical field is determined by the carriers of one band, whereas the resistivity depends on the carriers in both bands.  相似文献   

11.
The population noise in a semiconductor laser is calculated by means of the quantum mechanical Langevin method. The resulting population noise is given by 〈δ N c 2 〉=(T c/2) (rate in+rate out)+K(¯n), whereN c is the total number of electrons in the conduction band in the active region,T c is a relaxation time. The first expression is the usual shot noise term. The transition rates are the sum of the rates due to the light field, the pumping and the spontaneous emission. The last termK(¯ n) is caused by the light field fluctuations;¯n is the mean number of photons in the laser mode.K(¯ n) consists of two parts: a) The main part is proportional to the intensity noise of the light field, which increases below but near threshold and gets constant above threshold. b) There is a second term due to the fact that parts of the fluctuations of the population and of the light field are correlated. — The noise spectrumS I(ω) of the junction currentI is calculated for low frequencies. Beyond the usual shot noise termS I(0)=2eI, additional noise is found in and above the threshold region, a) mainly because of the fluctuations of the light field in the laser mode and b) to a small amount, because the absorption processes due to the laser photons weaken the forward current, which is carried by emission processes, while the absorption noise adds to the emission noise.  相似文献   

12.
The energy of plasma oscillations of free charge carriers in bismuth crystals ?ωp can be qual to the band gap at the L point of the Brillouin zone E gL as a result of doping with an acceptor impurity. Variation in the edge shape and splitting of the minimum in the plasma reflection are observed in experimental studies of reflection under normal incidence of radiation on the crystal. An analysis of the totality of available experimental data shows that the above special features are caused by interaction of elementary excitations (such as the plasma oscillations) with band-to-band transitions. It became possible for the first time to ascertain the composition of the bismuth crystals for which the condition ?ωp=E gL is satisfied and observe the variation in the characteristics of the plasma oscillations of free charge carriers, which occurs as a result of electron-plasmon interaction.  相似文献   

13.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

14.
The reflection R(?ω), transmission t(?ω), absorption α(?ω), and refraction n(?ω) spectra of polycrystalline In2O3–SrO samples with low optical transparency, which contain In2O3 and In2SrO4 crystallites with In4SrO6 + δ interlayers, are examined. In the region of small ?ω values, the reflection coefficient decreases as the resistance of samples saturated with oxygen increases. Spectral dependences n(?ω) and α(?ω) are calculated using the classical electrodynamics relations. The results are compared to the data based on the t(?ω) spectra. The calculated absorption spectra are interpreted within the model with an overlap of tails of the density of states in the valence band and in the conduction band. A “negative” gap E gn in the density of states with a width from–0.12 to–0.47 eV is formed in highly disordered samples in this model. It is demonstrated that the high density of defects and the band of deep acceptor states of strontium in the major matrix In2O3 phase are crucial to tailing of the absorption edge and its shift toward lower energies. The direct gap E gd = 1.3 eV corresponding to the In2SrO4 phase is determined. The energy band diagram and the contribution of tunneling, which reduces the threshold energy for interband optical transitions, are discussed.  相似文献   

15.
The dynamics of charge carriers in doped graphene, i.e., graphene with a gap in the energy spectrum depending on the substrate, in the presence of a Coulomb impurity with charge Z is considered within the effective two-dimensional Dirac equation. The wave functions of carriers with conserved angular momentum J = M + 1/2 are determined for a Coulomb potential modified at small distances. This case, just as any two-dimensional physical system, admits both integer and half-integer quantization of the orbital angular momentum in plane, M = 0, ±1, ±2, …. For J = 0, ±1/2, ±1, critical values of the effective charge Zcr(J, n) are calculated for which a level with angular momentum J and radial quantum numbers n = 0 and n = 1 reaches the upper boundary of the valence band. For Z < Zcr (J, n = 0), the energy of a level is presented as a function of charge Z for the lowest values of orbital angular momentum M, the level with J = 0 being the first to descend to the band edge. For Z>Zcr (J, n = 0), scattering phases are calculated as a function of hole energy for several values of supercriticality, as well as the positions ε0 and widths γ of quasistationary states as a function of supercriticality. The values of ε0* and width γ* are pointed out for which quasidiscrete levels may show up as Breit–Wigner resonances in the scattering of holes by a supercritical impurity. Since the phases are real, the partial scattering matrix is unitary, so that the radial Dirac equation is consistent even for Z > Zcr. In this single-particle approximation, there is no spontaneous creation of electron–hole pairs, and the impurity charge cannot be screened by this mechanism.  相似文献   

16.
n-ZnO/p-A IIIN (A III = Ga, Al) heterojunctions have been fabricated, which exhibit relatively strong electroluminescence in the blue-violet spectral range under forward bias. It is shown that ZnO layers grown with rf-discharge activation have a less developed surface with a significant decrease in the sizes and number of zinc clusters. The current-voltage characteristics of the heterostructures obtained have rectifying properties with a cutoff voltage corresponding to the ZnO band gap.  相似文献   

17.
The paper reports on a study of exciton luminescence in single crystals (SCs) and single-crystal films (SCFs) of YAlO3, which have substantially different concentrations of vacancy-type and substitutional defects, under excitation by synchrotron radiation near the fundamental absorption edge. The radiative annihilation of excitons in SCFs was shown to occur primarily at regular perovskite lattice sites and to be accompanied by luminescence in a band peaking at λmax = 295 nm with τ = 5.2 ns. In contrast to SCFs, the radiative exciton decay in YAlO3 SCs takes place predominantly near vacancy-type defects (F+ and F centers) and is accompanied by luminescence in the bands at λmax = 350 nm (τ = 2.5 ns) and 440 nm (τ1 = 1.9 ns, τ2 = 30 ms). Photoexcitation in the 175-nm band of YAlO3 SCs revealed photoconversion of the centers FF+.  相似文献   

18.
The present paper reports the effect of Bi addition on the optical behavior (optical band gap and refractive index) of Ge20Te80?x Bi x (where x=0, 1.5, 2.5, 5.0) glassy alloys by analyzing the transmission and reflection spectra of their thin films in the 900–2400 nm range. Films are deposited on glass substrate using a thermal evaporation technique under vacuum. Various optical parameters viz. refractive index, extinction coefficient, absorption coefficient, optical band gap, etc. are determined and the effect of Bi incorporation on these parameters is studied. The refractive index has been found to increase with increasing Bi content over the entire spectral range and this behavior is due to the increased polarizability of the larger Bi atomic radius (1.46 Å) compared to Te atomic radius (1.36 Å). Dispersion energy, E d , average energy gap, E 0 and static refractive index, n 0 is calculated using Wemple–DiDomenico model. Optical band gap is estimated using Tauc’s extrapolation and is found to decrease from 0.86 to 0.73 eV with the Bi addition. This behavior of the optical band gap is interpreted in terms of the electronegativity difference of the atoms involved and the cohesive energy of the system.  相似文献   

19.
We numerically study the quantum Hall effect (QHE) in three-dimensional topological insulator (3DTI) thin film in the presence of the finite Zeeman energy g and the hybridization gap Δ under a strong magnetic field and disorder. For Δ = 0 but g ≠ 0, the Hall conductivity remains to be odd-integer quanti-zed σ xy = ν(e 2/h) , where ν = 2? + 1 with ? being an integer. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center and the higher plateaus disappear first. The two central plateaus with ν = ± 1 around the band center are strongest against disorder scattering. With the increasing of the disorder strength, Hall plateaus are destroyed faster for the system with a weaker magnetic field. If g = 0 but Δ ≠ 0, there is a splitting of the central (n = 0) Landau level, yielding a new plateau with ν = 0, in addition to the original odd-integer plateaus. In the strong-disorder regime, the QHE plateaus can be destroyed due to the float-up of extended levels toward the band center. The ν = 0 plateau around the band center is strongest against disorder scattering, which eventually disappears. For both g ≠ 0 and Δ ≠ 0, the simultaneous presence of nonzero g and Δ causes the splitting of the degenerating Landau levels, so that all integer Hall plateaus ν = ? appear. The ν = 0,1 plateaus are the most stable ones. In the strong-disorder regime, all QHE states are destroyed by disorder, and the system transits into an insulating phase.  相似文献   

20.
The cross sections of partial photoneutron reactions are evaluated for the 63,65Cu and 80Se isotopes. The cross sections are free of systematic uncertainties from shortcomings of the experimental methods for neutron multiplicity sorting based on measurements of neutron energy used in experiments with quasimonoenergetic annihilation photon beams. An experimental-theoretical method is used to evaluate cross sections σeval(γ, in)= Fitheor σexp(γ, xn), where ratios Fitheor = σtheor(γ, in)/σtheor(γ, xn) = σtheor(γ, in)/σtheor[(γ, 1n) + 2(γ, 2n) + …] are calculated using a combined model of photonuclear reactions, and σexp(γ, xn) is the experimental cross section of the neutron yield reaction free from neutron multiplicity sorting problems. The cross sections are evaluated for reactions (γ, 1n) and (γ, 2n) for the 63,65Cu and 80Se isotopes, and for the total photoneutron reaction σ(γ, Sn) = σ[(γ, 1n) + (γ, 2n) + …]. It is shown that noticeable deviations of the experimental cross sections from the evaluated values result from the unreliable sorting of neutrons between the channels with multiplicities 1 and 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号