首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dielectric relaxation (activation energy U≈0.03 eV, relaxation time τ0≈5×10?11 s) has been observed in SrTiO3: Mn solid solutions at low temperatures. It is assumed that the relaxation is related to reorientation of the polarons localized at defects of the {Mn Ti 2+ -O?} type and that the deviations from classical thermally activated behavior at the lowest temperatures reached are due to the quantum tunneling mode.  相似文献   

2.
The magnitudes and temperature dependences of the root-mean-square of polarization fluctuations, which characterizes short-range ordering below TC, are determined for the first time for Sr0.986Ca0.014TiO3 single crystals, using temperature measurements of light refraction made in a manner developed by the authors. Ab initio calculations of the equilibrium structures and total energies of three lowtemperature phases for SrTiO3 and CaTiO3 are performed and the symmetry of the ground state of their solid solution is identified on the basis of the obtained results. Features of short- and long-range ordering in the Ca2+-induced ferroelectric phase of the Sr1 ? xCa x TiO3 system are discussed.  相似文献   

3.
The sequence of the ground states in SrTiO3 films subjected to epitaxial strain and fixed mechanical stress in the [001] and [110] directions is calculated from first principles within the density functional theory. Under the fixed-strain conditions, an increase in the substrate lattice parameter results in the following sequence of the ground states: I4cmI4/mcmIma2 → CmFmm2 → Ima2(II). When moving to the fixed-stress conditions, the phase sequence changes significantly and depends on how the stress is applied. It is revealed that the simultaneous presence of two types of the lattice instability (the ferroelectric and structural ones) in strontium titanate leads to the formation of a whole system of metastable phases whose number increases abruptly under the fixed-stress conditions. The stability of these phases changes with pressure and phase transitions occur between them. The appearance of broad bistability regions in certain parts of the phase diagram enables the use of this phenomenon for developing nonvolatile phase-change memory.  相似文献   

4.
X-ray structural, X-ray phase, and dilatometric analyses were used to explore specific features of the formation of solid solutions in the (1 − x)SrTiO3xBiScO3 system with x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. It was found that the synthesis of solid solutions from the initial Bi2O3, Sc2O3, TiO2, and SrCO3 components is accompanied by a considerable increase in the linear dimensions of the samples, depending on their composition. Solid solutions with x > 0.1 are formed through intermediate phases (Sr5Bi6O14 at x = 0.2; Sr0.78Bi2.22O4 at x = 0.3; and Sr2.25Bi6.75O12.38 at x = 0.4 and 0.5). It was shown that the samples with x = 0.2, 0.3, 0.4, and 0.5 have two phases: one with a cubic Pm3m structure and one with a tetragonal I4/mcm structure.  相似文献   

5.
This mini-review is dedicated to the 85th birthday of Prof. L.V. Keldysh, from whom we have learned so much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical, and cylindrical geometries. The electron gas can be created by applying an induction D0 to the STO surface. We describe the lattice dielectric response of STO using the Landau–Ginzburg free energy expansion and employ the Thomas–Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron density profile n(x) ∝ (x + d)–12/7, where dD0–12/7. We extend our results to overlapping electron gases in GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value ZcR/a, where a is the lattice constant. The net charge eZn grows with Z until Z exceeds Z* ≈ (R/a)9/7. After this point, the charge number of the compact core Zn remains ≈ Z*, with the rest Z* electrons forming a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.  相似文献   

6.
The lattice parameters of ceramic samples of (1 ? x)SrTiO3-xPbTiO3 solid solutions are measured at room temperature. It is found that the samples have cubic symmetry in the concentration range x = 0?0.3 and tetragonal symmetry for x > 0.3. The lattice parameter a is virtually independent of temperature for x < 0.8 and slightly decreases in the range x = 0.8?1.0, while the lattice parameter c increases with increasing x. The reduced cubic parameter varies nonlinearly and deviates from Vegard’s linear law as the concentration x increases.  相似文献   

7.
Structural investigation using X-ray synchrotron radiation has been performed on SrRuO3/SrTiO3/SrRuO3 epitaxial heterostructures, with each constituent layer a few unit cell thick grown on (001) SrTiO3 substrate. Detailed information on the evolution of the in-plane lattice structure has been obtained, in these heterostructures, by grazing incidence diffraction measurements. The samples have been grown by low-pressure pulsed laser deposition. Under our deposition conditions, SrRuO3 layers grow with an elongated cell perpendicular to the substrate surface. The in-plane pseudocubic lattice parameters do not match the in-plane square SrTiO3 structure even in the case of very thin SrRuO3 layers. Such a distortion was found to decrease with increasing the thickness of the SrTiO3 barrier layer.  相似文献   

8.
Temperature dependences of permittivity ε′ and third harmonic amplitude γ of nanocomposites obtained by embedding ferroelectric SC(NH2)2 in porous alumina films with pore sizes of 60 and 100 nm are studied. A substantial increase in the temperatures of ferroelectric phase transition Tc1 and Tc2 and that of phase transition Ti from incommensurate phase to paraphase are also observed. The temperatures of all phase transitions are found to rise as pore diameters shrink.  相似文献   

9.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

10.
The structure and dielectric characteristics of the (1000 nm)SrTiO3 spacer in a (001)SrRuO3 ‖ (001)SrTiO3 ‖ (001)La0.67Ca0.33MnO3 trilayer heterostructure grown on a (001)(LaAlO3)0.3+(Sr2AlTaO6)0.7 substrate have been studied. Both oxide electrodes, as well as the strontium titanate layer, were cube-on-cube epitaxially grown. The unit cell parameter in the SrTiO3 layer measured in the substrate plane (3.908±0.003 Å) practically coincided with that determined along the normal to the substrate surface (3.909±0.003 Å). The temperature dependence of the real part of the permittivity ?′ of the SrTiO3 layer in the range 70–180 K fits the relation (?′)?1 ~ ? 0 ?1 C 0 ?1 (T-T C ) well, where C0 and TC are the Curie constant and the Curie-Weiss temperature, respectively, for bulk strontium titanate crystals and ?0 is the free-space permittivity. The data obtained on the temperature dependence of the permittivity of SrTiO3 films enabled us to evaluate the effective depth of electric field penetration into the manganite electrode (L e ≈ 0.5 nm) and the corresponding capacitance (C e ≈1×10?6 F/cm2) of the interface separating the (001)SrTiO3 layer from the (001)La0.67Ca0.33MnO3 bottom electrode.  相似文献   

11.
Three-layer epitaxial heterostructures with a 750-nm-thick intermediate strontium titanate layer between two strontium ruthenate conductive thin-film electrodes have been grown by laser deposition. Photolithography and ion etching have been used to form film parallel-plate capacitors based on the grown heterostructures. The capacitance (C) and dielectric loss tangent (tanδ) of the parallel-plate capacitors have been measured in the temperature range T = 4.2–300 K at an applied bias voltage of up to ±2.5 V and without it. At T > 100 K, the temperature dependence of the dielectric permittivity (ε) of the SrTiO3 intermediate layer is well approximated by the Curie–Weiss law taking into account the capacitance induced by the penetration of an electric field into the oxide electrodes. At T ≈ 20 K, the dielectric permittivity ε of the SrTiO3 intermediate layer decreases by approximately 20% in an electric field of 25 kV/cm. The dielectric loss tangent of the film capacitor heterostructures decreases monotonically with a decrease in the temperature in the range from 300 to 80 K and almost does not depend on the electric field strength. However, in the range from 80 to 4.2 K, the dielectric loss tangent increases nonmonotonically (abruptly) with a decrease in the temperature and decreases significantly in an applied electric field.  相似文献   

12.
170Yb M?ssbauer spectroscopy, temperature dependent X-ray, magnetisation and specific heat data are presented in the hexagonal intermetallic YbAl3C3, in order to shed light on the isostructural transition occurring near 80 K and to investigate the electronic state of the Yb ion above and below the transition. In the low temperature phase, we find that there occurs an atomic rearrangement in the hexagonal unit cell, leading to a strong symmetry lowering at the Yb site. We show that no magnetic ordering of the Yb3+ moments occurs down to 0.04 K, and we discuss this finding in terms of 4f-conduction electron hybridisation and geometric frustration.  相似文献   

13.
Mn-doped SrTiO3 samples (3% Mn) with different deviations from stoichiometry have been investigated using XAFS spectroscopy. It was shown the under various preparation conditions manganese atoms can sub-stitute A and B sites of the perovskite structure and are in them in different charge states. Impurity Mn4+ ions that substitute Ti sites occupy on-center position in the lattice, whereas Mn2+ ions that substitute Sr sites are off-center and are displaced from the lattice sites by a distance of 0.32Å.  相似文献   

14.
A heterojunction was fabricated by growing a layer of Bi2Sr2Co2O y thin film on the 0.7 wt% Nb-doped SrTiO3 substrate. Such heterojunction showed good rectifying characteristics over a wide temperature range, and its transport mechanism under the forward bias can be attributed to a space charge limited conduction mechanism via defects near the interface of the heterojunction. Photovoltaic properties of the heterojunction were studied by using both continuous-wave and pulsed irradiations and the results can be well explained by the photovoltaic effect of a p–n junction.  相似文献   

15.
Metal–insulator–metal (M–I–M) structures involving transition-metal oxides and, more recently, also perovskite oxides with resistive switching effects have attracted substantial interest in research aimed at nonvolatile memories of nanometer dimensions. Although some models are presently under discussion, it is still not clear whether the fundamental switching mechanism is an interface or a bulk property, or a combination of both. Extended defects, such as dislocation lines and changes in the oxygen vacancy concentration, are considered responsible for the conducting state, and local reduction/oxidation processes have been proposed to be responsible for the resistive switching. In addition, the role of dopants has not been discussed in depth. Here we report on an electric-field-controlled electron trapping/detrapping process involved in the resistive switching in Cr-doped SrTiO3. Electroluminescence (EL) measurements reveal that during resistive switching, light emission is observed only in the switching transition from high to low conductivity. The EL spectrum is typical for Cr3+ in an octahedral ligand field, indicating that the switching process involves trapping/detrapping of electrons at the Cr site. With increasing conductivity of SrTiO3, we observe a change from the predominant (R-line) to the vibronically red-shifted transition, which points to a modification of the Cr-occupied lattice sites. PACS 71.30.+h; 78.60.Fi; 73.40.Rw; 78.55.-m; 85.30.Tv  相似文献   

16.
Nearly 50-nm thick La0.7Sr0.3MnO3 (LSMO) films were grown on Si substrates using molecular beam epitaxy on (001) Si substrates over-layered by a 20 nm thick SrTiO3 (STO) or by a 20 nm thick CaTiO3 (CTO) film. In addition, a reference LSMO film was directly deposited on a (001) STO substrate by pulsed laser deposition. For all the samples, X-ray diffraction revealed an excellent epitaxy of the LSMO film and small mosaicity around (001), with in-plane [100] and [010] cubic axes. The LSMO/CTO films are in-plane compressed while the LSMO/STO ones are in-plane extended. The temperature dependence of their static magnetic properties was studied using a SQUID, showing a Curie temperature overpassing 315 K for all the samples. Hysteresis loops performed at room temperature (294 K) with the help of a vibrating sample magnetometer (VSM) are also discussed. At 294 K Micro-strip ferromagnetic resonance (MS-FMR) was used to investigate the dynamic magnetic properties. It allows concluding to a strong anisotropy perpendicular to the films and to a weak fourfold in-plane anisotropy with easy axes along the [110] and [1[`1]0 1\bar{1}0 ] directions. Their values strongly depend on the studied sample and are presumably related to the strains suffered by the films.  相似文献   

17.
The low-frequency process of dielectric relaxation in the new lead-free compound BiLi0.6W0.4O3 prepared by conventional ceramic technology is studied. The features of dielectric relaxation are discussed in terms of a model of interaction between the domain boundaries and point defects of a crystalline lattice.  相似文献   

18.
The structural and electronic properties of the neutral and positively charged oxygen vacancies (F and F+ centres) in the bulk and on the (001) surfaces of SrTiO3 crystal are examined within the hybrid Hartree-Fock and density functional theory (HF-DFT) method based upon the linear combination of atomic orbital (LCAO) approach. A comparison of the formation energy for surface and bulk defects indicates a perceptible propensity for the segregation of neutral and charged vacancies to both SrO and TiO2 surface terminations with a preference in the latter case which is important for interpretation of space charge effects at ceramic interfaces. It is found that the vacancies reveal more shallow energy levels in the band gap on surfaces rather than in the bulk, in particular, on the TiO2 surface. The charged F+ centre has significantly deeper energy levels both in bulk and on the surfaces, as compared with the neutral F centre.  相似文献   

19.
The phase transition from an orthorhombic phase (space group Pnma) to a rhombohedral phase (space group R3m) of the CdHfO3 hafnate is investigated using methods of structural analysis. It is shown that crystal lattices of both phases contain polar structural units (octahedra, cubooctahedra). On this basis, it is assumed that the orthorhombic and rhombohedral phases of the CdHfO3 compound are the antiferroelectric and ferroelectric phases, respectively.  相似文献   

20.
The structure and magnetic states of a crystal of lightly doped manganite La0.95Ba0.05MnO3 were studied using thermal-neutron diffraction, magnetic measurements, and electrical resistance data in a wide temperature range. It is shown that, in terms of its magnetic properties, the orthorhombic crystal is characterized by two order parameters, namely, antiferromagnetic (T N = 123.6 K) and ferromagnetic (T C = 136.7 K). The results obtained differ in detail from known information on the manganites La0.95Ca0.05MnO3 and La0.94Sr0.06MnO3. Two models of the magnetic state of the La0.95Ba0.05MnO3 crystal are discussed, one of which is a model of a canted antiferromagnetic spin system and another is associated with the phase separation of the manganite. Arguments are advanced in favor of the coexistence in this crystal of the antiferromagnetic phase (about 87%) with a Mn4+ ion concentration of 0.048 and the 1/16-type charge-ordered ferromagnetic phase (about 13%) with a Mn4+ ion concentration of 0.0625. The specific features of the manganite studied are due to self-organization of the La0.95Ba0.05MnO3 crystal lattice caused by the relatively large barium ion size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号