首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Although polyethylene oxide (PEO) offers several advantages as a sieving polymer in SDS capillary polymer electrophoresis (SDS-CPE), solution properties of PEO cause deterioration in the electrophoresis because PEO in solution aggregates itself, degrades into smaller pieces, and forms polymer-micelle complexes with SDS. We examined protein separation on SDS-CPE with PEO as a sieving matrix in four individual buffer solutions: Tris-CHES, Tris-Gly, Tris-Tricine, and Tris-HCl buffers. The solution properties of PEO as a sieving matrix in those buffers were examined by dynamic light scattering (DLS) and by surface tension. Preferential SDS adsorption onto PEO disturbed protein-SDS complexation and impaired the protein separation efficiency. Substantial adsorption of SDS to PEO was particularly observed in Tris-Gly buffer. The Tris-CHES buffer prevented SDS from adsorbing onto the PEO. Only Tris-CHES buffer achieved separation of six proteins. This study demonstrated efficient protein separation on SDS-CPE with PEO.  相似文献   

2.
To control protein adsorption on surfaces, low-fouling polymer coatings such as poly(ethylene oxide) (PEG or PEO) and polysaccharides are used. Their ability to resist protein adsorption is related to the layer structure, hence the immobilization mode. A polymer array technology was developed to study the structural diversity of carboxymethyl dextran (CMD) layers, whose immobilization conditions were varied. CMD arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and by atomic force microscopy (AFM) colloidal probe force measurements. Serum protein adsorption was studied directly on the CMD arrays using surface plasmon resonance (SPR) microscopy. Physicochemical characterization revealed that pinning density regulates surface coverage and the amount of adsorbed molecules, and that salt concentration influences the surface structure of the charged polymer, forming extended or short layers. Protein adsorption experiments from serum showed that repulsive CMD layers are dense, with extended flexible chains. The present study underlines the usefulness of polymer arrays to study structural diversity of thin graft layers and to relate their physicochemical properties to their resistance to nonspecific protein adsorption.  相似文献   

3.
The possibility of using a novel comb polymer consisting of a chitosan backbone with grafted 44 units long poly(ethylene oxide) side chains for reducing nonspecific protein adsorption to gold surfaces functionalized by COOH-terminated thiols has been explored. The comb polymer was attached to the surface in three different ways: by solution adsorption, covalent coupling, and microcontact printing. The protein repellent properties were tested by monitoring the adsorption of bovine serum albumin and fibrinogen employing surface plasmon resonance and imaging null ellipsometry. It was found that a significant reduction in protein adsorption is achieved as the comb polymer layer is sufficiently dense. For solution adsorption this was achieved by adsorption from high pH solutions. On the other hand, the best performance of the microcontact printed surfaces was obtained when the stamp was inked either at low or at high pH. For a given comb polymer layer thickness/poly(ethylene oxide) density, significant differences in protein repellent properties were observed between the different preparation methods, and it is suggested that a reduction in the mobility of the comb polymer layer generated by covalent attachment favors a reduced protein adsorption.  相似文献   

4.
The materials covered with poly(ethylene oxide) (PEO) are of use in a wide variety of biomaterials due to blood compatibility of this polymer. The long-term sustainability of its blood compatibility strongly depends on the stability of the PEO layer against aqueous environment. An attempt was made in the present work to immobilize a PEO layer on the silicon surfaces using a silane coupling agent with the aim to improve the waterproof durability of the layer. Several kinds of PEO-modified substrates having a densely and closely packed hydrocarbon layer between substrate and PEO layer were prepared and the stability of the PEO layer against phosphate buffer saline (pH 7.4) was examined in terms of the density of hydrocarbon chains. Those substrates which have a dense hydrophobic chain layer showed a high waterproof durability and a good ability to suppress protein adsorption.  相似文献   

5.
The adsorption of polyethylene oxide (PEO) homologues in a wide range of molecular weight (from M(PEO)=200 to 10(6)) at the air/aqueous solution interface was investigated by dynamic and static surface tension measurements. An approximate estimate for the lower limit of PEO concentration was given at which reliable equilibrium surface tension can be determined from static surface tension measurements. It was shown that the observed jump in the earlier published sigma-lg(c(PEO)) curves is attributable to the nonequilibrium surface tension values at low PEO concentrations. The adsorption behavior of short chain PEO molecules (M(PEO)1000) is similar to that of the ordinary surfactants. The estimated standard free energy of PEO adsorption, DeltaG(0), increases linearly with the PEO molecular weight until M(PEO)=1000. In this molecular weight range, DeltaG(0) was found to be approximately the fifth of the hydrophobic driving force related to the adsorption of a surfactant with the same number of methylene groups. In the case of the longer chain PEOs the driving force of adsorption is so high that the adsorption isotherm is near saturation in the experimentally available polymer concentration range. Above a critical molecular weight the PEO adsorption reveals universal features, e.g., the surface tension and the surface density of segments do not depend on the polymer molecular weight.  相似文献   

6.
The dynamic adsorption of polymer/surfactant mixtures containing poly(ethylene oxide) (PEO) with either tetradecyltrimethylammonium bromide (C(14)TAB) or sodium dodecyl sulfate (SDS) has been studied at the expanding air/water interface created by an overflowing cylinder, which has a surface age of 0.1-1 s. The composition of the adsorption layer is obtained by a new approach that co-models data obtained from ellipsometry and only one isotopic contrast from neutron reflectometry (NR) without the need for any deuterated polymer. The precision and accuracy of the polymer surface excess obtained matches the levels achieved from NR measurements of different isotopic contrasts involving deuterated polymer, and requires much less neutron beamtime. The PEO concentration was fixed at 100 ppm and the electrolyte concentration at 0.1 M while the surfactant concentration was varied over three orders of magnitude. For both systems, at low bulk surfactant concentrations, adsorption of the polymer is diffusion-controlled while surfactant adsorption is under mixed kinetic/diffusion control. Adsorption of PEO is inhibited once the surfactant coverage exceeds 2 μmol m(-2). For PEO/C(14)TAB, polymer adsorption drops abruptly to zero over a narrow range of surfactant concentration. For PEO/SDS, inhibition of polymer adsorption is much more gradual, and a small amount remains adsorbed even at bulk surfactant concentrations above the cmc. The difference in behavior of the two mixtures is ascribed to favorable interactions between the PEO and SDS in the bulk solution and at the surface.  相似文献   

7.
The adsorption of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) onto silica from ethylammonium nitrate (a protic ionic liquid) has been investigated using colloid probe AFM force curve measurements. Steric repulsive forces were measured for PEO, confirming that PEO can compete with the ethylammonium cation and adsorb onto silica. The range of the repulsion increases with polymer molecular weight (e.g., from 1.4 nm for 0.01 wt % 10 kDa PEO to 40 nm for 0.01 wt % 300 kDa PEO) and with concentration (e.g., from 16 nm at 0.001 wt % to 78 nm at 0.4 wt % for 300 kDa PEO). Fits to the force curve data could not be obtained using standard models for a polymer brush, but excellent fits were obtained using the mushroom model, suggesting the adsorbed polymer films are compressed and relatively poorly solvated. No evidence for adsorption of 3.5 kDa PPO could be detected up to its solubility limit.  相似文献   

8.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. It is generally accepted that surface modification of the biomaterials with poly(ethylene oxide) (PEO) substantially reduces protein adsorption and cell adhesion. Dacron® (polyethylene terephthalate) fabric, which is one of the biomaterials commonly used in blood-contacting devices, was grafted with PEO. A simple two-step procedure for covalent grafting of PEO onto the surface of Dacron® fabric was used. The surface was first treated with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymer, to introduce a layer of double bonds onto the surface. The Dacron® surface was then exposed to a solution of Pluronic® F108 (PF108), a commercially available PEO-poly(propylene oxide)-PEO (PEO-PPO-PEO) triblock copolymer. The surface with two adsorbed layers of PEO-PB-PEO and PF108 was γ-irradiated in the presence of PF108 in the bulk solution for a total radiation dose of 0.8 Mrad. The bulk concentrations of PEO-PB-PEO and PF108 were varied to maximize the efficiency of PEO grafting. Fibrinogen adsorption on PEO-grafted surfaces was reduced more than 90%, compared with that on control surfaces, irrespective of the bulk concentrations of polymers used for grafting. Platelet adhesion was also reduced substantially by PEO grafting. Only a few round platelets were able to adhere to the PEO-grafted surface, while the control surface was fully covered with aggregates of activated platelets. PEO grafting on polyethylene terephthalate using PEO-PB-PEO and PEO-PPO-PEO block copolymers is a simple approach that can be used for various other biomaterials.  相似文献   

9.
Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces.  相似文献   

10.
Nonspecific protein adsorption generally occurs at the biomaterial-tissue interface and usually has adverse consequences. Thus, surfaces that are protein-resistant are eagerly sought with the expectation that these materials will exhibit improved biocompatibility. Surfaces modified with end-tethered poly(ethylene oxide) (PEO) have been shown to be protein-resistant to some degree. Although the mechanisms are unclear, it has been suggested that chain length, chain density, and chain conformation are important factors. To investigate the effects of PEO chain density, we selected a model system based on the chemisorption of chain-end thiolated PEO to a gold substrate. Chain density was varied by varying PEO solubility (proximity to cloud point) and incubation time in the chemisorption solution. The adsorption of fibrinogen and lysozyme to these surfaces was investigated. It was found that for 750 and 2000 MW PEO layers, resistance to fibrinogen increased with chain density and was maximal at a density of approximately 0.5 chains/nm(2) (80% decrease in adsorption compared to unmodified gold). As PEO chain density increased beyond 0.5/nm(2) adsorption increased. For PEO of 5000 MW the optimal chain density was 0.27/nm(2) and gave only a 60% reduction in fibrinogen adsorption. It is suggested that, at high chain density, the chemisorbed PEO is dehydrated giving a surface that is no longer protein resistant. The PEO-modified surfaces were found also to be resistant to lysozyme adsorption with reductions similar to, if somewhat less than, those for fibrinogen. The fibrinogen to lysozyme molar ratios were within the expected range for close-packed layers of these proteins in their native conformation and were relatively insensitive to PEO chain density and MW. This may suggest that such adsorption as did occur, even at chain densities giving minimum adsorption, may have been on patches of unmodified gold.  相似文献   

11.
Polyurethane (PU) was modified using isocyanate chemistry to graft polyethylene oxide (PEO) of various molecular weights (range 300-4600). An antithrombin-heparin (ATH) covalent complex was subsequently attached to the free PEO chain ends, which had been functionalized with N-hydroxysuccinimide (NHS) groups. Surfaces were characterized by water contact angle and X-ray photoelectron spectroscopy (XPS) to confirm the modifications. Adsorption of fibrinogen from buffer was found to decrease by ~80% for the PEO-modified surfaces compared to the unmodified PU. The surfaces with ATH attached to the distal chain end of the grafted PEO were equally protein resistant, and when the data were normalized to the ATH surface density, PEO in the lower MW range showed greater protein resistance. Western blots of proteins eluted from the surfaces after plasma contact confirmed these trends. The uptake of ATH on the PEO-modified surfaces was greatest for the PEO of lower MW (300 and 600), and antithrombin binding from plasma (an indicator of heparin anticoagulant activity) was highest for these same surfaces. The PEO-ATH- and PEO-modified surfaces also showed low platelet adhesion from flowing whole blood. It is concluded that for the PEO-ATH surfaces, PEO in the low MW range, specifically MW 600, may be optimal for achieving an appropriate balance between resistance to nonspecific protein adsorption and the ability to take up ATH and bind antithrombin in subsequent blood contact.  相似文献   

12.
The present work discusses the grafting by electron beam irradiation of poly(ethylene oxide) (PEO) star-shaped polymers onto porous expanded polytetrafluoroethylene (EXPTFE) surfaces. The resulting materials are intended to combine the good biocompatible properties of PEO with the outstanding mechanical properties of PTFE. The star-shaped PEOs were synthesized via anionic polymerization. 3 Mev electron beam irradiation was applied to graft these PEO stars onto porous EXPTFE surfaces. The hydrophobic EXPTFE surface had to be pre-modified with N-vinylpyrrolidone. ESCA was used to quantify the amount of grafted star-shaped PEO. Unmodified EXPTFE surfaces are well known, when implanted in a body, to be rapidly covered by a layer of cells and fibrin. The EXPTFE coated with PEO were implanted in the peritoneal cavity of rats (or under the back skin). This implantation did not induce any inflammation reactions and SEM analysis had attested the absence of adsorbed cells and fibrin. The glucose diffusion properties of these membranes were studied by a lag time analysis method and compared to those of pure PEO hydrogels. As expected, glucose diffuses through the hydrogel coated membrane and diffusion is not affected by the presence of the EXPTFE membrane.  相似文献   

13.
The adsorption behavior of bottle-brush polymers with different charge/PEO ratio on silica was studied using optical reflectometry and QCM-D. The results obtained under different solution conditions clearly demonstrate the existence of two distinct adsorption mechanisms depending on the ratio of charge/PEO. In the case of low-charge density brush polymers (0-10 mol %), the adsorption occurs predominantly through the PEO side chains. However, the presence of a small amount of charge along the backbone (as low as 2 mol %) increases the adsorption significantly above that of the uncharged bottle-brush polymer in pure water. As the charge density of the brush polymers is increased to 25 mol % or larger the adsorption occurs predominantly through electrostatic interactions. The adsorbed layer structure was studied by measuring the layer dissipation using QCM-D. The adsorbed layer formed by the uncharged brush polymer dissipates only a small amount of energy that indicates that the brush lie along the surface, the scenario in which the maximum number of PEO side chains interact with the surface. The adsorbed layers formed by the low-charge density brush polymers (2-10 mol %) in water are more extended, which results in large energy dissipation, whereas those formed by the high-charge density brush polymers (50-100 mol %) have their backbone relatively flat on the surface and the energy dissipation is again low.  相似文献   

14.
The adsorption of a linear- and bottle-brush poly(ethylene oxide (PEO))-based polymer, having comparable molecular weights, was studied by means of quartz crystal microbalance with dissipation monitoring ability (QCM-D) and AFM colloidal probe force measurements. The energy dissipation change monitored by QCM-D and the range of the steric forces obtained from force measurements demonstrated that linear PEO forms a more extended adsorption layer than the bottle-brush polymer, despite that the adsorbed mass is higher for the latter. Competitive adsorption studies revealed that linear PEO is readily displaced from the interface by the bottle-brush polymer. This was attributed to the higher surface affinity of the latter, which is governed by the number of contact points between the polymers and the interface, and the smaller loss of conformational entropy.  相似文献   

15.
We covalently immobilized poly(ethylene oxide) (PEO) chains onto a fluorinated ethylene propylene copolymer (FEP) surface. On the FEP surface, aldehyde groups were first deposited by plasma polymerization of acetaldehyde or acrolein. Then, amino‐PEO chains were immobilized through Schiff base formation, which was followed by reduction stabilization with sodium cyanoborohydride. The PEO‐grafted polymer surfaces thus prepared were characterized by X‐ray photoelectron spectroscopy (XPS), atomic force microscopy, contact‐angle measurements, and protein adsorption. The dramatic increase in the C O intensity of the high‐resolution XPS C 1s spectrum, together with an overall increase in oxygen content, indicated the successful attachment of PEO chains onto the acetaldehyde plasma surfaces. The amount of grafted PEO chains depended on the superfacial density of the plasma‐generated aldehyde groups. The grafted monoamino‐PEO chains formed a brushlike structure on the polymer surface, whereas the bisamino‐PEO chains predominately adopted a looplike conformation. The PEO surface had a regular morphology with greater roughness than the aldehyde surface underneath. Surface hydrophilicity increased with the grafting of PEO. Also, the bisamino‐PEO‐grafted surface had slightly higher surface hydrophilicity than its monoamino‐PEO counterpart. These PEO coatings reduced fibrinogen adsorption by 43% compared with the substrate FEP surface. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2323–2332, 2000  相似文献   

16.
The interactions between an organic polymer with plasticizing activity and a model surface (CaCO3), with a surface activity similar to the cement one, have been analysed by volumetric analysis and thermal analysis: TG/DTG and DSC. The synthesized polymer has a negative link site (carboxylate) that is able to interact with the substrate and a long ethylene oxide chain that contribute to the dispersing activity. The pattern of the adsorption isotherm suggests the occurring of a step like adsorption, initially characterised by a coil conformation of PEO chain followed by a more PEO strained, linear, conformation as the amount of polymer increases. The polymer adsorption appears to modify the crystalline phase and morphology of the CaCO3 surface as the thermal analysis puts in evidence through the CaCO3 decomposition temperature shifts. SEM analysis confirms the morphology changes induced by polymer adsorption.  相似文献   

17.
Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.  相似文献   

18.
Huang MF  Hsu CE  Tseng WL  Lin YC  Chang HT 《Electrophoresis》2001,22(11):2281-2290
Separations of phiX-174/HaeIII DNA restriction fragments have been performed in the presence of electroosmotic flow (EOF) using five different polymer solutions, including linear polyacrylamide (LPA), poly(ethylene oxide) (PEO), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), and agarose. During the separation, polymer solutions entered the capillary by EOF. When using LPA solutions, bulk EOF is small due to adsorption on the capillary wall. On the other hand, separation is faster and better for the large DNA fragments (> 872 base pairs, bp) using derivative celluloses and PEO solutions. Several approaches to optimum resolution and speed by controlling EOF and/or altering electrophoretic mobility of DNA have been developed, including (i) stepwise changes of ethidium bromide (0.5-5 microg/mL), (ii) voltage programming (125-375 V/cm), (iii) use of mixed polymer solutions, and (iv) use of high concentrations of Tris-borate (TB) buffers. The DNA fragments ranging from 434 to 653 bp that were not separated using 2% PEO (8,000,000) under isocratic conditions have been completely resolved by either stepwise changes of ethidium bromide or voltage programming. Compared to PEO solutions, mixed polymer solutions prepared from PEO and HEC provide higher resolving power. Using a capillary filled with 600 mM TB buffers, pH 10.0, high-speed (< 15 min) separation of DNA (pBR 322/HaeIII digest, pBR 328/ Bg/l digest and pBR 328/Hinfl digest) has been achieved in 1.5% PEO.  相似文献   

19.
DNA separations in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO) solutions have been demonstrated. During the separations, PEO entered capillaries filled with Tris-borate (TB) free buffers by EOF and acted as sieving matrices. We have found that ionic strength and pH of polymer and free solutions affect the bulk EOF and resolution differently from that in capillary zone electrophoresis. The EOF coefficient increases with increasing ionic strength of the free TB buffers as a result of decreases in the adsorption of PEO molecules. In contrast, the bulk EOF decreases with increasing the ionic strength of polymer solutions using capillaries filled with high concentrations of free TB buffers. Although resolution values are high due to larger differential migration times between any two DNA fragments in a small bulk EOF using 10 mM TB buffers, use of a capillary filled with at least 100 mM TB free buffers is suggested for high-speed separations. On the side of PEO solutions, 1.5% PEO solutions prepared in 100 to 200 mM TB buffers are more proper in terms of resolution and speed. The separation of DNA markers V and VI was accomplished less than 29 min in 1.5% PEO solutions prepared in 100 mM TB buffers, pH 7.0 at 500 V/cm using a capillary filled with 10 mM free TB buffers, pH 7.0.  相似文献   

20.
温敏梳状嵌段共聚物对PS微球阻抗蛋白吸附作用的研究   总被引:2,自引:0,他引:2  
采用可逆加成断裂链转移聚合(RAFT)方法和大分子单体技术,制备了温敏性聚N-异丙基丙烯酰胺(PNIPAM)-聚乙烯基吡咯烷酮(PVP)与PNIPAM-聚氧化乙烯(PEO)梳状嵌段共聚物,这些共聚物具有PVP或PEO支链.以溶菌酶为蛋白模型研究了所得共聚物对聚苯乙烯(PS)微球表面蛋白吸附的抑制作用.通过絮凝实验、激光散射法表观粒径测定、电泳迁移率测定及蛋白吸附量的定量数据比较了不同梳状结构的抗蛋白吸附效果.结果表明,预吸附梳状嵌段共聚物可有效阻抗蛋白吸附,亲水支链增加阻抗性能提高,即使环境温度高于PNIPAM的相转变温度也能阻抗蛋白吸附.透射电镜和共聚物胶体粒径测试表明,梳状嵌段共聚物阻抗蛋白吸附的机制是预吸附后PVP或PEO亲水支链在微球表面形成了阻隔层.通过PS微球的变温絮凝实验可评价预吸附聚合物的抗蛋白吸附性能,快速获得定性结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号