首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Polyurethane elastomers of known degrees of cross-linking were prepared from hydroxylterminated poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) chains having numberaverage molecular weights in the range 880–6820 g mol?1. The chains were end-linked into “model” trifunctional networks using a specially prepared aromatic triisocyanate. The networks thus obtained were studied with regard to their stress-strain isotherms in both the unswollen and swollen states, in elongation at 25°, and with regard to their equilibrium swelling in benzene at 57.9°. Values of the modulus in the limit at high deformation were in good agreement with corresponding results previously obtained on trifunctional networks of poly(dimethylsiloxane) (PDMS). Since PEO has a much higher value of the plateau modulus in the uncross-linked state, this agreement indicates that inter-chain entanglements do not contribute significantly to the equilibrium modulus of an elastomeric network. These values of the high deformation modulus are also in good agreement with recent molecular theories as applied to the non-affine deformation of a “phantom” network. The swelling equilibrium results were in very good agreement with the new theory of network swelling developed by Flory.  相似文献   

2.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

3.
Isothermal and nonisothermal crystallization kinetics of different poly(ethylene oxide)/poly(propylene oxide) blends were investigated by means of differential scanning calorimetry (DSC). Glass transition temperature of quenched samples have also been reported. Phase morphologies and poly(ethylene oxide) spherulite growth rates were analyzed by polarizing light transmission microscopy. Results show morphological changes along with regime transitions of poly(ethylene oxide) crystal growth. Kinetic analyses of the data suggest that, although the blend behaves as a noncompatible, phase-separated system, there exists a certain degree of interaction between polymer chains. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Functionality-type distributions of macromomoners with poly(ethylene oxide) and poly(propylene oxide) chains are studied by chromatography under critical conditions. It is shown that, in the critical separation mode, separation of macromolecules with respect to size disappears and only information on the functionality-type distributions of the test samples may be derived. The critical conditions are determined experimentally with a normal phase (unmodified silica gel) for poly(propylene oxide) and with a reversed phase C18 for poly(ethylene oxide). The experimental retention volumes for bifunctional macromolecules are in satisfactory agreement with the values calculated under approximation of the Gaussian chain model.  相似文献   

5.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

6.
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
A series of poly(itaconate ester)s containing methyl-terminated poly(ethylene oxide) side chains with lengths ranging from 1 to 5 ethylene oxide units has been synthesized. Both heat capacity Cp and dynamic mechanical measurements have been carried out on these polymers using differential scanning calorimetry (DSC) and torsional braid analysis (TBA), respectively. The resulting data for this polymer series are discussed, and comparisons are made with work previously published for the corresponding di-n-alkyl itaconate ester polymers where appropriate.  相似文献   

8.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

9.
Graft copolymers of styrene and poly(propylene oxide) were prepared by reaction between styrene and a poly(propylene oxide) methacrylate macromonomer. The graft copolymers were characterized by i.r., GPC and 1H-NMR and mechanical properties were examined. The effect of zinc chloride on the copolymerization was evaluated. The results showed a decrease in the incorporation of macromonomer in the graft copolymer when zinc chloride was added to the system. This effect has been attributed to interaction among chains of poly(propylene oxide) and the zinc chloride.  相似文献   

10.
Poly(2,6-dimethyl-1,4-phenylene oxide) has been crosslinked in the presence of large poly(dimethylsiloxane) cyclics (92 repeating units). Approximately 26% by weight of the cyclics were threaded and permanently captured by the polymer network forming a topological isomeric structure referred to as a polymeric catenane. Nonentrapped cyclics were extracted with chloroform. Chemical analyses and micrographs showed evidence for crosslinking and cyclic entrapment, while physical testing demonstrated distinct differences in physical properties such as the glass transition temperature, ultimate mechanical properties, and dynamic viscoelastic response between the crosslinked control samples, and those containing cyclic poly(dimethylsiloxane).  相似文献   

11.
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003  相似文献   

12.
Poly(styrene-graft-ethylene oxide), having alkyl chains (C12 or C18) on the polystyrene main chain or on the poly(ethylene oxide) (PEO) side chains, were synthesized. The main chain was alkylated by first ionizing amide groups in a styrene/acrylamide copolymer with tert-butoxide, and then using the amide anions as sites for reactions with 1-bromoalkanes. An excess of amide anions was used in the reaction, and the remaining anions were subsequently utilized as initiator sites for the anionic polymerization of ethylene oxide (EO). Synthesis of poly(styrene-graft-ethylene oxide) with alkylated side chains was accomplished by polymerization of EO onto the ionized styrene/acrylamide copolymer, followed by an alkylation of the terminal alkoxide anions with 1-bromoalkanes. The alkylated graft copolymers were structurally characterized by using elemental analysis, 1H NMR, GPC, and IR spectroscopy. DSC analysis showed that only graft copolymers with PEO contents exceeding about 50 wt % and side chain crystallinities comparable to those of homo-PEO. Main chain alkylated graft copolymers generally had higher crystalinities, as compared to nonalkylated and side chain alkylated samples. The graft copolymers absorbed water corresponding to one water molecule per EO unit at low PEO contents. The water absorption increased progressively at PEO contents above 30 wt % for main chain alkylated samples and above 50 wt % for non-alkylated samples. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Raman longitudinal acoustic mode (LAM) spectra have been obtained during isothermal crystallization from the melt at various temperatures of a poly(ethylene oxide) (PEO) fraction of molecular weight about 3000 and an α,ω-methoxylated fraction (MPEO) derived from it. For both fractions, we find that noninteger fold (NIF) chains are formed in the initial stages of crystallization. With time, and more rapidly at higher crystallization temperatures, the NIF chains transform into integer-fold (IF) structures. The final morphologies of the two fractions are similar, consisting of IF mixed-crystal lamellae composed mainly of extended (E) chains with embedded once-folded (F2) chains. This solid-state transformation from the NIF state may proceed through the F2 state. The effect of hydrogen bonds in the case of PEO is not to change the transformation process but to slow it when compared to MPEO. Comparison with small-angle x-ray scattering (SAXS) data indicates that in both cases the NIF chains are tilted to the lamellar surface and that the tilt from perpendicular eventually disappears as IF chains form at the later stages of crystallization. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1117–1126, 1997  相似文献   

14.
The grafting of the potassium alkoxide derivative of poly(ethylene oxide) on poly(methyl methacrylate) in homogeneous solution in toluene was studied. The alkoxide was prepared by reaction with potassium metal with methanolic potassium methoxide, or with potassium naphthalene. The last was the most suitable for the systematic investigation of the grafting process. Soluble graft polymers were formed, and essentially the initial poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) participated in the production of graft polymer. The composition of the graft polymers and the frequency of grafting of the side chains were determined by NMR. The solubility of the graft polymers in methanol and water increased with increasing PEO contents, while the melting ranges decreased. Fractionation of the crude graft polymers showed that the grafting reaction was random, and graft polymers containing one PEO side chain per about 10–170 MMA units were obtained.  相似文献   

15.
Biphasic polymer latexes were synthesized by a seeded swelling and polymerization method. The latexes were composed of a poly(butyl methacrylate) core and a poly(ethylene oxide) rich shell cross-linked with poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock diol diacrylate macro-cross-linker. Nanostructured films were obtained by annealing the biphasic polymer latexes at a temperature between the glass-transition temperatures of the core latex and the cross-linked poly(ethylene oxide) based shell. Atomic force microscope images of the latex film revealed that the poly(butyl methacrylate) core phase is confined in the poly(ethylene oxide)-rich continuous phase with the form of separate nanosized spheres.  相似文献   

16.
Polymer blends based on poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) have been prepared to analyze the crystallization kinetics of poly(ethylene oxide) confined in semicrystalline PVDF with different ratios of both polymers. Both blend components were dissolved in a common solvent, dimethyl formamide. Blend films were obtained by casting from the solution at 70 °C. Thus, PVDF crystals are formed by crystallization from the solution while PEO (which is in the liquid state during the whole process) is confined between PVDF crystallites. The kinetics of crystallization of the confined PEO phase was studied by isothermal and nonisothermal experiments. Fitting of Avrami model to the experimental DSC traces allows a quantitative comparison of the influence of the PVDF/PEO ratio in the blend on the crystallization behavior. The effect of melting and further recrystallization of the PVDF matrix on PEO confinement is also studied. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 588–597  相似文献   

17.
The interaction of sodium, potassium and caesium salts with poly(ethylene oxide) in nitromethane is considered as a model for solvation of alkali counterions with a heterochain polymer during the anionic polymerization of heterocycles. The methods of 23Na and 133Cs n.m.r. and of conductometry sensitive towards the state of the cation have been used for studying the equilibria. It has been shown that poly(ethylene oxide) binds cations much more strongly than monomeric cyclic ethers, a solvation shell being formed involving several (6–12) oxygen atoms of the same macromolecule. The equilibrium constants of the formation of solvate complexes have been evaluated; they increase with increasing chain length and decreasing cation radius. The mechanism of interactions and their role in the processes of anionic polymerization are discussed.  相似文献   

18.
The phase diagrams of some binary systems such as poly(ethy lene oxide)-p-dihalogenobenzene, poly(ethylene oxide)-resorcinol and poly(ethylene oxide)-p-nitrophenol show the existence of molecular complexes with a well definite stoichiometry. The crystal structure of these molecular complexes has been determined by wide-angle X-ray diffraction. The morphology of these molecular complexes crystallized from the melt is investigated by differential scanning calorimetry and small angle X-ray scattering. PEO-p-dichlorobenzene and PEO-resorcinol complexes crystallize from the melt as extended chains (EC) or integral folded chain (IFC) lamellar crystals. As observed for PEO oligomers, the fraction of EC crystals of PEO-resorcinol increases with the crystallization temperature. However EC crystals are present in a larger range of crystallization temperatures than for pure PEO. On the other hand, the PEO-p-nitrophenol complex crystallizes over all the studied crystallization temperature range as stable non integral folded chain (NIFC) crystals. Explanations related to the crystal structure of these complexes and to their mode of growth are invoked to explain these two deeply different lamellar morphologies.  相似文献   

19.
The method of enhanced Rayleigh scattering spectroscopy (ERS) was developed to investigate the complexation of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in semidilute polymer solutions. Based on the Ornstein‐Zernike equation, the relationship between macromolecular static correlation length and ERS intensity was presented. Moreover, the ERS spectra were calculated by the moving window two‐dimensional (MW2D) correlation spectroscopy to get detailed information of the polymer complexation. The results indicated that the ERS spectroscopy characteristics of the polymer mixtures have similar trend, and the ERS intensity promptly increases as the macromolecular chains contract. The increase of ERS intensity showed that the degree of complexation between PAA and PEO increases when the pH value decreases. The complexation results from the collapse of macromolecular chains, which is induced by the PAA chains contracting and the enhanced association between PAA and PEO chains because of the hydrogen bond formation. In addition, the association resulting from the complexation of PAA and PEO in solution was demonstrated by the MW2D correlation spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1847–1852, 2010  相似文献   

20.
The micropolarities of the reverse micelle (RM) interior of nonionic poly(ethylene oxide) surfactants of the alkyl ether type (poly(ethylene oxide)[4] lauryl ether (C12E4, Brij 30)), alkyl-aryl ethers (poly(ethylene oxide)[4] nonylphenyl ether (C9PhiE4), poly(ethylene oxide)[5] nonylphenyl ether (C9PhiE5), and poly(ethylene oxide)[5] octylphenyl ether (C8PhiE5)), and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronics P123, F127) were investigated as a function of the water content by applying the absorption probe technique, using 4-nitropyridine-N-oxide (NP) as a probe. The change in the micellar aggregate micropolarity in different solvents (cyclohexane, decane, n-butanol, and n-butyl acetate) at various water contents has been investigated. The research was focused on the determination of the effects of surfactant structure and solvent type on the hydration degrees of the PEO chains in the region at the core limit, where the NP probe was located. All results regarding the polarities in RM and PEO/water calibration mixtures have been expressed in terms of Kosower's Z values, using the linear dependence of E(NP) on Kosower's Z. The PPO/butanol mixtures have also been used for RM in butanol as a reference system. The data revealed that local polarity in RM is dependent on the surfactant type, block copolymer composition, solvent nature, and water content. At the same water content, the results clearly indicate a lower hydration degree of triblock copolymers, as compared to the surfactants of the alkyl ether and alkyl-aryl ether type, but for P123 and F127 Pluronics in n-butanol the hydration is higher owing to the behavior of butanol as cosurfactant and to its hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号