首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilization kinetics experiments were developed to study the effects of the polyethylene glycol chain length of Triton X surfactants on their interactions with the cholesterol-containing phosphatidylcholine vesicles. An empirical liposome stability ratio was used to describe the vesicle solubilization process. The effectiveness of Triton X surfactants in solubilizing vesicles decreases with increasing polyethylene glycol chain length of surfactants. It was also shown that vesicles containing the intercalated surfactant molecules with the largest number of ethylene glycol units per molecule exhibited the exceedingly retarded solubilization behavior. Independent experiments based on a thermodynamic approach provide supporting evidence for the conclusions obtained from solubilization kinetics experiments.  相似文献   

2.
Vesicle leakage experiments were carried out to establish how cholesterol content regulates membrane permeability as induced by surfactant exposure. Vesicles containing up to 50% cholesterol were examined. Four different surfactants were chosen as membrane perturbants, including nonoxynol-9 which is commonly used in spermicidal formulations. As part of this study, we establish that the extrusion procedure commonly used to fabricate unilamellar vesicles does not unintentionally alter the desired composition of these model membrane systems. The kinetics of the leakage process is well characterized by a single exponential rate of release, similar to the form seen in the absence of membrane cholesterol. Our leakage experiments show that membranes become more resistant toward surfactant attack, in direct proportion with cholesterol content. This rise in resistance is surfactant specific. Above 30%, all membranes show positive deviation from the linear increase in resistance with increasing cholesterol content. Two other sterols, dihydrocholesterol and coprostanol, were also found to increase membrane resistance and behaved similarly despite a key difference in molecular structure. A peculiar leakage response was observed when membranes were exposed to the surfactant sodium dodecyl sulfate (SDS) above its critical micelle concentration. Our findings support the hypothesis that SDS micelles solubilize phospholipid molecules, creating a membrane with higher cholesterol content that is extremely resistant to perturbation.  相似文献   

3.
The synthesis of four sugar-based surfactants derived from glucose and (R)-12-hydroxystearic acid is described. The surfactants have a hydroxy group in the hydrophobic part, which is either free or acylated using acetyl chloride, hexanoyl chloride, or myristoyl chloride. Three of the synthesized surfactants are water-soluble and are evaluated with respect to their CMCs and hemolytic activities. The fourth surfactant has limited water solubility and is not further included in the study. The investigated surfactants are all hemolytic close to their respective CMC indicating that their use in parenteral formulations may be limited. Nevertheless, surfactants having the proposed structure appear as promising alternatives to existing solubilizing agents for pharmaceutical applications.  相似文献   

4.
Rizvi SA  Shamsi SA 《Electrophoresis》2005,26(21):4172-4186
Four alkenoxy leucine-based surfactants with C8-C11 chains containing a terminal double bond, and one C11 chain surfactant with a terminal triple bond are synthesized and characterized in monomeric and polymeric forms. These polymeric pseudophases are then utilized to study the influence of chain length and DP for the enantioseparations of seven beta-blockers in MEKC. Variations in chain length and concentration of polymeric surfactants showed significant effects on the chiral resolution (Rs) and efficiency (N). A relatively large elution range combined with the highest polarity and aggregation number (A) but the lowest retention time, partial specific volume, and optical rotation generated with C8-polymeric surfactant results in simultaneous enantioseparation of all seven beta-blockers with higher N and R(s). In particular, highly hydrophobic beta-blockers are better resolved with shorter hydrocarbon chain even at higher surfactant concentration, which is unachievable with longer chain surfactant. On the other hand, polymer derived from C11-triple bond provided smaller A value compared to C11-double bond surfactant. However, chiral Rs of hydrophobic beta-blockers are still achievable with the C11-triple bond surfactant with enhanced N and shorter analysis time. In addition, effect of polymerization concentration is evaluated by polymerizing all five surfactants at five times their respective CMCs and 100 mM equivalent monomer concentrations. Polymerization of shorter chain (C8 and C9) double-bonded surfactants at five times their respective CMCs results in higher A values with better chiral Rs and N compared to the same two surfactants polymerized at 100 mM.  相似文献   

5.
Three alkyltrimethylammonium bromides (i.e., dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromide or DTAB, TTAB, and CTAB, respectively) were used to remove a blue solvent-based ink from a printed surface of high-density polyethylene bottles. Either an increase in the alkyl chain length or the surfactant concentration was found to increase the deinking efficiency. Complete deinking was achieved at concentrations about 3, 8, and 24 times of the critical micelle concentration (CMC) of CTAB, TTAB, and DTAB, respectively. For CTAB, ink removal started at a concentration close to or less than its CMC and increased appreciably at concentrations greater than its CMC, while for TTAB and DTAB, significant deinking was only achieved at concentrations much greater than their CMCs. Corresponding to the deinking efficiency of CTAB in the CMC region, the zeta potential of ink particles was found to increase with increasing alkyl chain length and concentration of the surfactants, which later leveled off at some higher concentrations. Wettability of the surfactants on an ink surface increased with increasing alkyl chain length and concentration of the surfactants. Lastly, solubilization of ink binder in the surfactant micelles was found to increase with increasing alkyl chain length and surfactant concentration. We conclude that adsorption of surfactant on the ink pigment is crucial to deinking due to modification of wettability, zeta potential, pigment/water interfacial tension, and dispersion stability. Solubilization of binder (epoxy) into micelles is necessary for good deinking because the dissolution of the binder is required before the pigment particles can be released from the polymer surface.  相似文献   

6.
In this study, n-alkanoic acids (C7-COOH, C11-COOH, and C17-COOH) were immobilized onto strong basic anion-exchange membranes to form a stationary phase for hydrophobic solid phase extraction (SPE) application. The effects of feed surfactant amount, membrane counter ions, and surfactant chain length were investigated. Immobilized surfactant capacity increased with increasing feed surfactant amount, decreasing chain length, and the existence of OH counter ions. Moreover, according to TGA analysis, a surfactant bi-layer was formed on the membrane surface. Following successful surfactant immobilization, batch adsorption experiments for doxepin (feed concentration of 0.2 mg/mL) were conducted. The adsorbed doxepin amount increased with the use of longer-chain surfactants, indicating that doxepin adsorption was dominated by hydrophobic interaction with the immobilized surfactant. An optimal desorption performance was achieved using 1 M NaCl in 50% ethanol for both C7-COOH and C11-COOH-immobilized membranes. In the SPE process with one C11-COOH-immobilized membrane, a concentration factor of 2 and complete doxepin recovery was achieved from 10 mL of a 0.1 ppm load.  相似文献   

7.
正、负离子表面活性剂混合体系溶致液晶生成的相行为   总被引:1,自引:0,他引:1  
研究了烷基(C8,C12,C14)三甲基溴化铵、烷基(C12,C14)溴化吡啶与烷基(C8,C12)硫酸钠混合体系溶致液晶形成的条件与结构的变化.在高浓度的水溶液中,随着正、负离子表面活性剂摩尔比接近于1,液晶结构由六角相过渡为层状相.表面活性剂非极性链长改变,对相行为影响显著,短碳链的正、负离子表面活性剂混合体系,在等摩尔比时,体系为层状液晶或立方液晶为主,夹杂少许沉淀.随碳链增长,两类表面活性剂间的静电吸引效果表现为生成沉淀的摩尔比例范围变宽,沉淀量增多,共存的液晶相减少,甚至消失.若只改变正离子的极性头基,季胺盐比吡啶盐与烷基硫酸盐的作用要强,形成不溶物的混合摩尔比例范围更宽.  相似文献   

8.
Interfacial tension of water–CO2 interface was measured by pendant drop method in the presence of a surfactant of various concentrations. The surfactants used were three surfynols which are non-ionic blanched hydrocarbon with different length of the alkyl side chain. Prior to the interfacial tension measurements, the solubility of the surfynols in CO2 were determined from cloud point method. The measured interfacial tensions indicated that an addition of small amount surfactant did reduce the interfacial tension. The interfacial activities of surfactants were evaluated from the slope of the interfacial tension reduction curve against the surfactant concentration and rationalized in terms of the molecular natures such as hydrophobic alkyl chain length.  相似文献   

9.
利用荧光探针的溶致变色行为,研究了以不同阳离子表面活性剂处理过的化学修饰蒙脱土内腔的极性.清楚地观察到随所用表面活性剂长链碳原子数目的增多,荧光探针N,N-二甲氨基查尔酮在蒙脱土内的荧光光谱峰值波长移向短波,表明蒙脱土内腔的极性随活性剂疏水链长的增长而不断减小.本工作所得结果将对具体的插层材料(包括不同极性的聚合单体或聚合物分子)在插层时选择合适的表面处理剂有所帮助.  相似文献   

10.
The adsorption and complexation of polystyrene sulfonate (a highly charged anionic polyelectrolyte) and a series of cationic surfactants, alkyltrimethylammonium bromide, CnTAB, n = 8-16, at the air-water interface has been studied by combining surface tension and ellipsometry measurements. We find that increasing the chain length of the surfactant from 8 to 10 carbons leads to a sharp increase in adsorption of PSS/CnTAB complexes. When the surfactant tail length is further increased to 12 and 14 carbons, surface adsorption becomes less favored than macroscopic phase separation, resulting in a partial surface depletion. Furthermore, we find that when surface tensions are plotted against surfactant/monomer molar concentration ratio, all data collapse to a single curve. This result shows that the surfactant-polymer molar ratio, s/p, is a key parameter for tuning the surface activity of the complexes formed.  相似文献   

11.
Organometallic compounds and surfactants constitute a potential threat to the environment. For that reason we have embarked on a study of their joint action on membranes. Model lecithin liposome membranes were modified with the cationic surfactant trimethyldodecylammonium bromide or the anionic surfactant sodium dodecylsulfonate, and the effect of tripropyltin chloride on the process of calcium (Ca2+) and praseodymium (Pr3+) desorption from the liposome membrane was studied. Kinetic constants for the process of Ca2+ ion desorption from lecithin liposome membranes were determined using the radiotracer method. The percentage of Pr3+ ion desorption from liposome membranes was measured by the 1H NMR method. Trimethyltin, triethyltin and tripropyltin alone caused increased Ca2+ and Pr3+ desorption from liposome membranes with increasing concentration of the compounds and alkyl chain length. For both the processes studied, a cationic surfactant brought about a lower effectiveness of tripropyltin and an anionic surfactant resulted in a higher effectiveness. The effect observed can be explained by changes in the surface charge of the membrane, induced by the surfactant modifiers and by the concomitant change in the partition coefficient of the organotin. The results obtained indicate a protective or harmful joint action of the surfactants used with tripropyltin on membranes. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
We have examined the polymer-surfactant interaction in mixed solutions of the cationic surfactants, i.e., dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetradecyltriphenylphosphonium bromide, and tetradecylpyridinium bromide and a semiflexible anionic polyelectrolyte carboxymethylcellulose in water and aqueous salt solutions by various techniques: tensiometry, viscosimetry or ion-selective electrode method, and dynamic light scattering. We have investigated the effect of varying surfactant chain length, head group size, counterion, and ionic strength on the critical aggregation concentration (CAC) of mixed polymer surfactant systems and the collapse of the polymer molecule under different solution conditions. The CAC decreases with increasing alkyl chain length. Above a certain surfactant concentration, mixed aggregates start growing until their macroscopic phase separation. The growth is more rapid with greater surfactant tail length and with increasing head group size. This is attributed in both cases to the increasing hydrophobic interaction between polymer and surfactant. Among surfactants with monovalent halide counterions, iodide induces the strongest binding, reflected by the onset of growth of the mixed aggregates at low surfactant concentration. This is perhaps related to the decreasing hydration of the counterion from chloride to iodide. The surfactant concentration at which the viscosity of the solution starts to decrease sharply is smaller than the CAC, and probably reflects polymer chain shrinkage due to noncooperative binding.  相似文献   

13.
The sorption and diffusion processes of anionic surfactants with different chain length through polyacrylamide hydrogels with low swelling degree have been studied by electrical conductivity measurements. The multicomponent equilibrium equation has been used to model the sorption isotherms of different anionic surfactant in the hydrogels. Such isotherms show that initial rapid sorption of unimer surfactant into the membranes occurs, suggesting that non-freezing water can be involved in these interactions. In aqueous solution, at concentrations near and above the critical micelle concentration an anti-co-operative region is found. The diffusion coefficients of the anionic surfactants inside the hydrogel matrix show that the mobility of diffusing surfactant entities is dependent on cross-linker concentration and chain length. The Cukier hydrodynamic model and the free volume theory as modified by Peppas and Reinhart were applied to explain the dependence of the diffusion coefficients of surfactant on surfactant concentration inside the hydrogel. The hydrodynamic model was applied with success to the more hydrophilic surfactant, sodium 1-octanesulfonate, showing that the diffusion coefficients, D, increase when the resistance to hydrodynamic medium decreases; when the surfactant chain length increases (sodium dodecyl sulfate and sodium 1-hexadecane sulphonate) the variation of D with the free volume can only be understood considering the sieving effect produced by the surfactant inside gel.  相似文献   

14.
The effects of nonionic surfactants having different hydrophilicity and membranes having different hydrophobicity and molecular weight cut-off on the performance of micellar-enhanced ultrafiltration (MEUF) process were examined. A homologous series of polyethyleneglycol (PEG) alkylether having different numbers of methylene groups and ethylene oxide groups was used for nonionic surfactants. Polysulfone membranes and cellulose acetate membranes having different molecular cut-off were used for hydrophobic membranes and hydrophilic membranes, respectively. The concentration of surfactant added to pure water was fixed at the value of 100 times of critical micelle concentration (CMC). The flux through polysulfone membranes decreased remarkably due to adsorption mainly caused by hydrophobic interactions between surfactant and membrane material. The decline of solution flux for cellulose acetate membranes was not as serious as that for polysulfone membranes because of hydrophilic properties of cellulose acetate membranes. The surfactant rejections for the cellulose acetate membranes increased with decreasing membrane pore size and with increasing the hydrophobicity of surfactant. On the other hand the surfactant rejections for polysulfone membranes showed totally different rejection trends with those for cellulose acetate membranes. The surfactant rejections for the polysulfone membranes depend on the strength of hydrophobic interactions between surfactant and membrane material and molecular weight of surfactants.  相似文献   

15.
The interaction of surface-active molecules with lipid bilayers is ubiquitous both in biological systems and also in several technological applications. Here we explore the interaction of ionic surfactants with liposomes whose composition mimics the ocular epithelia. In this study, liposomes with a composition mimicking ocular epithelia are loaded with calcein dye above the self-quenching concentration. The liposomes are then exposed to surfactants, and the rate of dye leaked from the liposomes due to the interaction of surfactants is measured. Both cationic and anionic surfactants at various concentrations and ionic strengths are explored. Results show that the liposome bilayer permeability to the dye increases on exposure to the surfactants, leading to the release of the dye trapped in the core. However, the dye release stops after a finite time, suggesting a transient increase in permeability followed by healing. The leakage profiles exhibit two different timescales for the cationic surfactant but only one timescale for the anionic surfactant. The total dye leakage increases with surfactant concentration, and at a given concentration, the dye leakage is significantly higher for the cationic surfactants. The timescale for the healing decreases with increasing surfactant concentration, and increasing ionic strength increases the dye leakage for the anionic surfactant. These results show that the surfactant binding to the lipid bilayer increases the permeability while the bilayers heal likely because of the surfactant jump from the outer to the inner leaflet and/or rearrangement into tighter aggregates.  相似文献   

16.
Four surfactants, sodium cholate(SC), n-dodecyl-β-D-maltopyranoside(DDM), lauryldimethylamine oxide(LDAO) and Triton X-100(TX), which are generally used in photosynthetic pigment-protein complexes preparation, were studied on their interaction with photosynthetic membrane from Rhodobacter sphaeroides 2.4.1 by electrochromic absorption band-shift of endogenous carotenoids and by vesicle size measurements as well. The surfactant critical micelle concentration(cmc) was found to be negatively correlated with the capability of enhancing the permeability of photosynthetic membranes to proton, and more elaborated model of surfactants interacting with membranes was obtained. The electrochromic absorption band-shift measurement might develop into a useful tool to evaluate the effects of surfactants on various membranes.  相似文献   

17.
In this study, a pseudodouble-chained ion pair amphiphile, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), was prepared from a mixture of cationic surfactant, hexadecyltrimethylammonium bromide, and anionic surfactant, sodium dodecylsulfate. Positively charged catanionic vesicles were then successfully fabricated from HTMA-DS with the addition of cationic surfactants, dialkyldimethylammonium bromide (DXDAB), including ditetradecyldimethylammonium bromide (DTDAB), dihexadecyldimethylammonium bromide, and dioctadecyldimethylammonium bromide (DODAB), with a mechanical disruption approach. The control of charge characteristic and physical stability of the catanionic vesicles through the variations of DXDAB molar fraction and alkyl chain length was then explored by size, zeta potential, and Fourier transform infrared analyses. It was found that the molecular packing and/or molecular interaction of HTMA-DS with DXDAB rather than the electrostatic repulsion between the charged vesicles dominated the physical stability of the mixed HTMA-DS/DXDAB vesicles. The presence of DTDAB, which possesses short alkyl chains, could adjust the packing of the unmatched chains of HTMA+ and DS? and promote the vesicle formation. However, the weak molecular interaction due to the short chains of DTDA+ could not maintain the vesicle structures in long-term storage. With increasing the alkyl chain length of DXDAB, it was possible to improve the vesicle physical stability through the enhanced molecular interaction in the vesicular bilayer. However, the long alkyl chains of DODAB unmatched with those of HTMA-DS, resulting in the vesicle disintegration in long-term storage. For the formation of stable charged catanionic vesicles of HTMA-DS/DXDAB, a good match in hydrophobic chains and strong molecular interaction were preferred for the vesicle-forming molecules.  相似文献   

18.
Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.  相似文献   

19.
The micellization process of a series of dissymmetric cationic gemini surfactants [CmH2m+1(CH3)2N(CH2)6N(CH3)2C6H13]Br2 (designated as m-6-6 with m = 12, 14, and 16) and their interaction with dimyristoylphosphatidylcholine (DMPC) vesicles have been investigated. In the micellization process of these gemini surfactants themselves, critical micelle concentration (cmc), micelle ionization degree, and enthalpies of micellization (DeltaHmic) were determined, from which Gibbs free energies of micellization (DeltaGmic) and entropy of micellization (DeltaSmic) were derived. These properties were found to be influenced significantly by the dissymmetry in the surfactant structures. The phase diagrams for the solubilization of DMPC vesicles by the gemini surfactants were constructed from calorimetric results combining with the results of turbidity and dynamic light scattering. The effective surfactant to lipid ratios in the mixed aggregates at saturation (Resat) and solubilization (Resol) were derived. For the solubilization of DMPC vesicles, symmetric 12-6-12 is more effective than corresponding single-chain surfactant DTAB, whereas the dissymmetric m-6-6 series are more effective than symmetric 12-6-12, and 16-6-6 is the most effective. The chain length mismatch between DMPC and the gemini surfactants may be responsible for the different Re values. The transfer enthalpy per mole of surfactant within the coexistence range may be associated with the total hydrophobicity of the alkyl chains of gemini surfactants. The transfer enthalpies of surfactant from micelles to bilayers are always endothermic due to the dehydration of headgroups and the disordering of lipid acyl chain packing during the vesicle solubilization.  相似文献   

20.
Syntheses and solution properties of novel fluorinated surfactants with branched tail, especially on anionic surfactants having two polyfluoroalkyl chains and on anionic surfactants having different hydrophobic chains (hybrid surfactants), are reviewed. For example, when the fluorocarbon chain length in the surfactants possessing two polyfluoroalkyl chains increases, the Krafft points and the area of surfactant molecule at the air-water interface increases, the critical micelle concentration decreases, but the degrees of ionic dissociation of micelle are almost the same. Moreover, the flocculation and redispersion abilities of these surfactants for dispersed magnetic particles in water are enhanced by an increase in the chain length. The hybrid surfactants are found to have the ability to considerably lower surface tension, and they can emulsify a ternary-component system of hydrocarbon/water/perfluoropolyether oil. Furthermore, some of the hybrid surfactants show anomalous solution properties and thermoresponsive viscoelasticity due to the assembly structure changes with increasing its concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号