首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the transport properties of a Z-shaped graphene nanoribbon (GNR). It is found that the quasibound states in the Z-shaped junction induce resonant peaks around the Dirac point in the conductance profile. The resonant transmission via the quantum bound state is very sensitive to the size of the junction. The number and also the lifetimes of the quasibound states increase with the size of the Z-shaped junction. Long lifetime bound states which do not induce obvious resonant peaks exist in the junction with a wider or longer zigzag edged GNR. The resonant characteristics of the Z-shaped GNR can be tuned by the variation of the geometrical size.  相似文献   

2.
The dc Josephson effect is investigated in a single-walled metallic carbon nanotube connected to two superconducting leads. In particular, by using the Luttinger liquid theory, we analyze the effects of the electron-electron interaction on the supercurrent. We find that in the long junction limit the strong electronic correlations of the nanotube, together with its peculiar band structure, induce oscillations in the critical current as a function of the junction length and/or the nanotube electron filling. These oscillations represent a signature of the Luttinger liquid physics of the nanotube, for they are absent if the interaction is vanishing. We show that this effect can be exploited to reverse the sign of the supercurrent, realizing a tunable π-junction.  相似文献   

3.
A quantum antidot, a submicron depletion region in a two-dimensional electron system, has been actively studied in the past two decades, providing a powerful tool for understanding quantum Hall systems. In a perpendicular magnetic field, electrons form bound states around the antidot. Aharonov–Bohm resonances through such bound states have been experimentally studied, showing interesting phenomena such as Coulomb charging, h/2eh/2e oscillations, spectator modes, signatures of electron interactions in the line shape, Kondo effect, etc. None of them can be explained by a simple noninteracting electron approach. Theoretical models for the above observations have been developed recently, such as a capacitive-interaction model for explaining the h/2eh/2e oscillations and the Kondo effect, numerical prediction of a hole maximum-density-droplet antidot ground state, and spin-density-functional theory for investigating the compressibility of antidot edges. In this review, we summarize such experimental and theoretical works on electron interactions in antidots.  相似文献   

4.
We illustrate some experimental features of the recently discovered radiation-induced zero-resistance states in the high-mobility GaAs/AlGaAs system, with a special emphasis on the interplay between the radiation-induced changes in the diagonal resistance and the Hall effect. We show that, quantum Hall effects, i.e., quantum Hall plateaus, disappear under photoexcitation, at the minima of the radiation-induced magnetoresistance oscillations.  相似文献   

5.
By introducing the entangled state representation and Feynman assumption that 'electron pairs are bosons, ..., a bound pair acts as a Bose particle ', we construct an operator Hamiltonian for a mesoscopic inductance-capacitance (LC) circuit including a Josephson junction, then we use the Heisenberg equation of motion to derive the current equation and the voltage equation across the inductance as well as across the Josephson junction. The result manifestly shows how the junction voltage is affected by the capacitance coupling. In this way the Cooper-pair number-phase quantization for this system is completed.  相似文献   

6.
We have studied optoelectronic properties of photonic nanowires doped with an ensemble of four-level nanoparticles. Nanowires are made from two photonic crystals A and B where crystal A is embedded in B. Photons are confined with the photonic nanowire due to the band structure engineering of crystals A and B. A probe field is applied to monitor the absorption spectrum, and a control field is applied to shift the position of absorption peak. It is considered that nanoparticles are interacting with bound photon states of the nanowire. It is found that the number of bound states in the wire depends on the size and the energy depth of the wire. It is also found that when the resonance energy lies near the bound state, the system goes from absorbing state to the transparent state. This is due to the strong coupling between nanoparticles and bound photons in the wire. The control field switches the system from the transparent state to the absorbing state by changing the location of the resonance energy. The present findings can be used to make new types of optoelectronic switches.  相似文献   

7.
Resonance Transport of Graphene Nanoribbon T-Shaped Junctions   总被引:1,自引:0,他引:1       下载免费PDF全文
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.  相似文献   

8.
We study strong Coulomb correlations in dense two-dimensional electron-hole plasmas by means of direct path integral Monte Carlo simulations. In particular, the formation and dissociation of bound states, such as excitons, bi-excitons and many particle clusters, is analyzed and the density-temperature regions of their occurrence are identified. At high density, the Mott transition to the fully ionized state (electron-hole hexatic liquid) is detected. Particular attention is paid to the influence of the hole to electron mass ratio M on the properties of the plasma. For high enough values of M we observed the formation of Coulomb hole crystal-like structures.  相似文献   

9.
We have developed numerical simulation method for quasi-particle structures in the three-dimensional nano-sized superconductors, using the three-dimensional finite element method and the Bogoliubov-de Gennes equation. Using this method, we analyzed the superconducting state in the nano-sized cubic superconductors. We found the spatial oscillations of order parameter because of the confinement of superconducting electrons, and also we found the quasi-particle bound states at the corners of the cubic superconductors because of suppression of superconductivity at the corners.  相似文献   

10.
We extend the circuit theory of superconductivity to cover transport and proximity effect in mesoscopic systems that contain unconventional superconductor junctions. The approach fully accounts for zero-energy Andreev bound states forming at the surface of unconventional superconductors. As a simple application, we investigate the transport properties of a diffusive normal metal in series with a d-wave superconductor junction. We reveal the competition between the formation of Andreev bound states and proximity effect that depends on the crystal orientation of the junction interface.  相似文献   

11.
宋伟 《中国物理快报》2007,24(2):336-339
We propose a protocol for teleportation of arbitrary mixture of diagonal Bell states, it is shown that the channel can be constructed with either pure maximally entangled states or mixed bound entangled states. We also present protocols to realize the controlled teleportation of mixture of diagonal Bell states via multi-particle mixed states. Our results show that bound entangled states are also important and useful resources in quantum communication tasks.  相似文献   

12.
Summary We study propagation of an electron wave in a double-quantum-well structure formed by alternate layers of GaAlAs and GaAs. In such a structure, electron states parallel to the layers are described by 2D plane waves and in the perpendicular direction by the bound states of the confining potential. We show that an electron, initially introduced in one well, will execute oscillations between the two wells of the structure. Although the frequency of oscillations depends primarily on the distance separating the wells and the confining potential, it is shown in this paper that the frequency also depends on the effective mass of the electron, if it is different within and outside the well. Expressions are derived for the frequency of oscillations, taking into account the difference in the effective mass of the electron.  相似文献   

13.
We consider a model for a single molecule with a large frozen spin sandwiched in between two BCS superconductors at equilibrium, and show that this system has a π junction behavior at low temperature. The π shift can be reversed by varying the other parameters of the system, e.g., temperature or the position of the quantum dot level, implying a controllable π junction with novel application as a Josephson current switch. We show that the mechanism leading to the π shift can be explained simply in terms of the contributions of the Andreev bound states and of the continuum of states above the superconducting gap. The free energy for certain configuration of parameters shows a bistable nature, which is a necessary pre-condition for achievement of a qubit.  相似文献   

14.
Based on recent advances in the study of the statistics of interparticle distances and angles in plasmas, we develop an approach for the determination of the effective statistical weights of atomic (ionic) quantum states in ideal and nonideal plasmas. This approach allows one to account naturally for the effects of both the perturbation of the bound states by the neighboring ions and for the binding energy reduction due to the screening of the Coulomb interaction. We analyze the roles of tunneling and overbarrier escape of the optical electron from the parent ion potential well. The effects of neighbor ions and free electrons on these processes, and the simultaneous presence of several perturber ion species in the plasma are treated. We show that the present approach offers significantly more accurate effective-statistical-weight values in comparison to the existing theoretical treatments, and yields physical expressions for the empirical factors of the existing theories. Examples of calculations of effective statistical weights are given. The effects of the atomic (ionic) states collectivization on the collisional-radiative kinetics of dense plasmas are discussed. Received 10 August 2001  相似文献   

15.
A variational method based on the use of bond coordinates and of a basis set expansion described by distributed Gaussian functions (DGF) is reviewed for its applications to the study of weakly bound triatomic clusters. This approach will be shown to be particularly well suited to treat very diffuse states as those presented by Noble gas (Ng) containing systems like the Ng3, and Ng2X, with X being also a very weakly bound atomic impurity. Several statistical properties such as radial distributions, sizes and dominance of triangular configurations for the corresponding bound states are shown to be directly obtained with this method over the whole spectrum of the floppy cluster bound states, in both the rotationless case and also when special care is taken to define rotational constants to yield rovibrational states and their energy levels.  相似文献   

16.
We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed.  相似文献   

17.
We study the collective temporal coherence of a small-world network of coupled stochastic Hodgkin-Huxley neurons. Previous reports have shown that network coherence in response to a subthreshold periodic stimulus, thus subthreshold signal encoding, is maximal for a specific range of the fraction of randomly added shortcuts relative to all possible shortcuts, p, added to an initially locally connected network. We investigated this behavior further as a function of channel noise, stimulus frequency and coupling strength. We show that temporal coherence peaks when the frequency of the external stimulus matches that of the intrinsic subthreshold oscillations. We also find that large values of the channel noise, corresponding to small cell sizes, increases coherence for optimal values of the stimulus frequency and the topology parameter p. For smaller values of the channel noise, thus larger cell sizes, network coherence becomes insensitive to these parameters. Finally, the degree of coupling between neurons in the network modulates the sensitivity of coherence to topology, such that for stronger coupling the peak coherence is achieved with fewer added short cuts.  相似文献   

18.
We show that in the conditions where the quantized Hall effect is observed, capacitance oscillations of the junction should be present. A comparison between the plateaux of Hall resistance and the amplitude of the capacitance oscillations gives the amount of localized states in the two-dimensional electron gas.  相似文献   

19.
We present a universal Holevo-like upper bound on the locally accessible information for arbitrary multipartite ensembles. This bound allows us to analyze the indistinguishability of a set of orthogonal states under local operations and classical communication. We also derive the upper bound for the capacity of distributed dense coding with multipartite senders and multipartite receivers.  相似文献   

20.
We present an optodynamic measurement of a laser-induced cavitation bubble and its oscillations based on a scanning technique using a laser beam-deflection probe. The deflection of the beam was detected with a fast quadrant photodiode which was built into the optical probe. The applied experimental setup enabled us to carry out one- or two-dimensional scanning of the cavitation bubble, automatic control of the experiment, data acquisition and data processing. Shadow photography was used as a comparative method during the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号