共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
3.
研究高功率微波作用下等离子体中的雪崩效应,对于研究等离子体防护技术具有重要意义.通过采用等离子体流体近似方法,建立等离子体中的波动方程、电子漂移-扩散方程和重物质传递方程,表征电磁波在等离子体中的传播以及等离子体内部带电粒子的变化情况,分析研究了高功率微波作用下雪崩效应的产生过程和变化规律.研究表明,入射电磁波功率决定了雪崩效应的产生;初始电子密度能够影响雪崩效应产生的时间;入射电磁波的激励作用初始表现为集聚效应,当激励能量积累到一定阈值时,雪崩效应才会产生;在雪崩效应产生过程中,等离子体内部电子密度的变化非常迅速并且比较复杂.雪崩效应产生后,等离子体内截止频率会远超过入射波频率,电磁波不能在等离子体中传播,从而起到防护高功率微波的效果. 相似文献
4.
等离子体对高功率微波的防护 总被引:1,自引:0,他引:1
提出了用等离子体防护高功率微波破坏电子设备的方法。建立了“介质层-等离子体层-介质层-等离子体层”的反射/吸收模型,其中两层均匀非磁化等离子体厚度各为50mm,等离子体频率为30GHz,等离子碰撞频率为70GHz。计算了微波的透射功率、防护结构的最小防护距离。计算结果表明:对功率10GW、脉冲宽度100ns、天线100m2 (效率50%)的微波源产生的微波,频率小于30GHz时,将被防护装置反射;频率为31~80GHz时,防护结构的最小防护距离约为5km。 相似文献
5.
报道了可分别传输TM01模和TE01模的两种弯曲圆波导的设计方法和计算结果。研究表明:所设计的TM01模弯曲波导和TE01模弯曲波导在中心频率上传输效率均超过99.5%,传输效率大于95%的带宽分别达到20.0%和14.4%;该两个弯曲波导也分别适用于传输TE11模和TM11模;水平极化TE11模与TM01模、垂直极化TM11模与TE01模在弯曲圆波导中传输时具有相似的传输效率和频带特性;而垂直极化TE11模、水平极化TM11模由于不易和其它模式耦合,在弯曲波导中传输时具有较高的传输效率。 相似文献
6.
报道了可分别传输TM01模和TE01模的两种弯曲圆波导的设计方法和计算结果。研究表明:所设计的TM01模弯曲波导和TE01模弯曲波导在中心频率上传输效率均超过99.5%,传输效率大于95%的带宽分别达到20.0%和14.4%;该两个弯曲波导也分别适用于传输TE11模和TM11模;水平极化TE11模与TM01模、垂直极化TM11模与TE01模在弯曲圆波导中传输时具有相似的传输效率和频带特性;而垂直极化TE11模、水平极化TM11模由于不易和其它模式耦合,在弯曲波导中传输时具有较高的传输效率。 相似文献
7.
8.
介绍了大功率容量定向耦合器的设计、标定、测试与应用情况。以X波段圆波导定向耦合器为例,在9.2~10.2 GHz的频带范围内,基于小孔耦合理论优化设计的结构,其耦合度可以稳定在(55±2)dB以内,隔离度大于80 dB。在此基础上,设计加工了X波段圆波导定向耦合器并进行了标定测试,测试与仿真结果吻合较好,高功率微波实验证实了其具有较高功率容量,能够满足实验需求。该类圆波导定向耦合器已广泛应用于实验室高功率微波源的在线测量装置中。 相似文献
9.
介绍了大功率容量定向耦合器的设计、标定、测试与应用情况。以X波段圆波导定向耦合器为例,在9.2~10.2 GHz的频带范围内,基于小孔耦合理论优化设计的结构,其耦合度可以稳定在(552) dB以内,隔离度大于80 dB。在此基础上,设计加工了X波段圆波导定向耦合器并进行了标定测试,测试与仿真结果吻合较好,高功率微波实验证实了其具有较高功率容量,能够满足实验需求。该类圆波导定向耦合器已广泛应用于实验室高功率微波源的在线测量装置中。 相似文献
10.
为保护电子设备不受高功率微波损坏,在矩形波导中嵌入等离子体限幅器。计算了不同气体的微波击穿场强随气体压强以及微波频率的变化规律。在高气压条件下(1 333~133 320 Pa),气体击穿场强随气压增大而增大,在计算的4种气体中Ne的击穿场强最小;低气压条件下(1.333 2~133.32 Pa),气体击穿场强随气压增大而减小,且Xe具有最小击穿场强。高气压条件下气体的击穿场强明显高于低气压下的击穿场强。计算结果表明:当填充133.32 Pa的Xe时,限幅器能够在约30 km范围内,有效地防护10 GW级高功率微波对电子设备的损坏。 相似文献
11.
设计了一种高功率微波矩形波导移相器,在矩形波导中平行于电场放置金属片,沿波导宽边移动金属片,实现波导内的可变相移。通过优化设计波导和金属片的结构尺寸可实现0~360相移,通过优化设计金属片过渡匹配结构可实现较低的插损。设计波导内为全金属结构,不存在介质材料,采用真空绝缘可以承受较高的功率传输。设计了中心频率为9.4 GHz的金属片波导移相器,移相器最大插损小于0.2 dB,功率容量设计达到64 MW。实验测试,移相器最大插损小于0.5 dB,相频曲线呈线性关系。 相似文献
12.
从麦克斯韦方程和流体理论出发,推导了填充磁化等离子体慢波结构的基本方程.在大磁场情况下,对等离子体填充盘荷波导的色散特性和耦合阻抗作了研究,结果表明填充等离子体使色散曲线上移,耦合阻抗提高.等离子体填充产生出模式谱非常丰富的周期性低频等离子体模式(TG模式).当等离子体密度增加到一定程度后,场模TM01模的频率范围和TG01模的频率范围相近,两个模式互相耦合产生出新的混合模G1,G2.如果相对论行波管工作在混合模上,将会产生新的工作机理.
关键词:
盘荷波导
等离子体填充
色散特性
相对论行波管 相似文献
13.
14.
15.
研究了一种新型高功率微波相移器同轴插板式相移器,其设计思想为:在同轴波导内插入金属导体板,将同轴波导分为几个扇形截面波导,由于扇形截面波导中传输的TE11模相速度与同轴TEM模的相速度不同,通过改变插入金属板的长度就可以实现相移的调节。设计了中心频率为4 GHz的同轴插板式相移器,并进行了数值模拟验证。结果表明:当相移器同轴波导内半径为2.0 cm,外半径为4.5 cm,相移器总长度为50 cm时,可实现的最大相移量为360°,在3.9~4.1 GHz频率范围内相移器的插入损耗低于0.1 dB。 相似文献
16.
17.
微波等离子体相对其它等离子体而言有很多的优点,具有极高的工业应用价值。但在大气条件下,大体积的微波等离子体较难获得。为达到产生该种微波等离子体并将之应用的目的,特设计了一台环形波导反应腔设备并从事了等离子体激发的相关研究。介绍了该设备的设计思路,给出了常用的非磁化微波等离子体工作气体的击穿曲线,通过软件仿真得到了反应腔内的电场分布,并陈述了微波等离子体反应的基本现象。结合试验的结果,证明了软件仿真的正确性和装置的有效性。目前,该装置可在大气压下顺利激发一定体积的氦、氩等离子体。 相似文献
18.
利用机械调节波导宽边尺寸可变化波导波长,从而实现变频波束扫描相同的效果,针对窄边辐射波导行波阵的波束扫描特性进行了分析,以实现宽角波束扫描为目标,着重分析了不同辐射缝隙间距下变化宽边所能得到的最大波束扫描范围。设计了通过变化宽边尺寸实现宽角扫描的X波段窄边辐射波导缝隙阵,设计波束扫描范围指向波导馈入端,避开阵列法向辐射(此方向辐射效率较低),实现了29°的连续波束扫描范围,在波束扫描范畴内增益下降小于3 dB,辐射效率大于62%;设计缝隙宽度3 mm, 波导长度约1 m(缝隙数40),单根波导缝隙天线可实现高功率微波功率容量70 MW。 相似文献