首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
. We report on the experimental and theoretical study of spectrum transformation and frequency blue-shift of femtosecond laser pulses with intensities up to 2×1016 W/cm2, propagating in glass capillary tubes under gas ionization. Monomode optical guiding with 45% transmission efficiency is demonstrated in a 100-μm-diameter, 20-cm length capillary. A broadening of the initial spectrum as much as several initial spectrum widths is achieved. Besides the broadening, the mean frequency of the output radiation in the spectrum experiences a blue-shift of up to several initial spectrum widths, caused by the non-stationary, non-linear process of gas ionization. Our numerical simulations, in the form of a simple one-dimensional model for the propagation of intense laser pulses in gas-filled capillaries, are in good qualitative agreement with the experimental results. These simulations show the possibility of significant compression of an output pulse in a simple compression scheme (e.g. a piece of silica glass with normal dispersion), which is very important for obtaining laser pulses with few optical cycles at the millijoule energy level. Received: 25 September 2001 / Revised version: 6 December 2001 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +7-8312/363-792, E-mail: dekart@ufp.appl.sci-nnov.ru  相似文献   

2.
3.
We present two sets of experimental results on the ablation-rate decrease with increase of the number of consecutive laser pulses hitting the same spot on the target surface. We have studied laser ablation of a carbon target with nanosecond pulses in two different interaction regimes: one with a XeCl laser (λ=308 nm) and the other with a Nd:YAG laser (λ=1064 nm), in both cases at the intensity ∼5×108 W/cm2 Two different mechanisms were found to be responsible for the ablation-rate decrease; they are directly related to the two different laser–matter interaction regimes. The UV-laser interaction is in the regime of transparent vapour (surface absorption). The increase of the neutral vapour density in the crater produced by the preceding laser pulses is the main reason for the decrease of ablation rate. With the IR laser each single laser pulse interacts with a partially ionised plume. With increase of the number of pulses hitting the same spot on the target surface, the laser–matter interaction regime gradually changes from the near-surface absorption to the volume absorption, resulting in the decrease in absorption in the target and thus in the decrease in the ablation rate. The change in the evaporation rate was considered for both vacuum and reactive-gas environments. Received: 21 February 2001 / Accepted: 26 February 2001 / Published online: 23 May 2001  相似文献   

4.
We use sub-10-fs pulses at 400 nm and 15-fs pulses at 800 nm to ionize water molecules and their isotopomers HDO and D2O in a pump–probe scheme. Pulses are generated via spectral broadening of 25-fs pulses of a 1-kHz Ti:sapphire amplifier system by self-phase modulation in a noble-gas-filled hollow waveguide and subsequent compression using chirped mirrors. At this time scale vibronic excitation of the first bending mode of water in the electronic ground state by impulsive Raman scattering is possible (e.g. the fundamental bending mode of H2O: tvib=20 fs). The effect of this pre-excitation on the ionization rate is shown. Received: 14 May 2001 / Revised version: 24 August 2001 / Published online: 19 September 2001  相似文献   

5.
In a fiber amplifier, spectral compression due to self-phase modulation is demonstrated for ultrashort pulses. We report the generation of near-transform-limited picosecond pulses with peak powers of several kW at a repetition rate of 74 MHz and diffraction-limited beam quality in a Yb-doped fiber amplifier when seeding with a negative chirped pulse. Received: 17 September 2001 / Revised version: 22 November 2001 / Published online: 17 January 2002  相似文献   

6.
Spatial and spectral control, using an intracavity capillary and a slit, is applied to improve the output pulse quality of a Ti:sapphire laser. Satellite-free 10-fs optical pulses with a smooth spectral and spatial profile have been generated. Employing a root-mean-square formalism for pulse characterization, spatial, spectral and temporal intensity distributions are analyzed for laser pulses with a duration as short as three to four optical cycles. Received: 11 June 2001 / Published online: 18 July 2001  相似文献   

7.
Tungsten microcone arrays with a high aspect ratio are formed by the cumulative nanosecond pulsed-Nd:YAG laser irradiation of single-crystal tungsten under low pressure in an inert atmosphere. The morphology of the microcones and their density were strongly affected by the number of laser pulses. The microcones grew to a length of 20 μm with a diameter of about 1.5 μm at the tip after irradiation with more than 1200 pulses under our experimental conditions. They may have potential applications for emission cathodes in a field-emission display (FED) and in microelectronic devices. Received: 8 January 2001 / Accepted: 13 June 2001 / Published online: 2 October 2001  相似文献   

8.
A fs regenerative amplifier based on Cr:LiCAF is demonstrated for the first time. With direct diode pumping, 8 μJ of pulse energy are obtained directly from the amplifier. When seeded by an Er-doped fiber laser, the amplified seed pulses are compressed down to 252 fs, limited by residual net third-order dispersion of the compression gratings and intracavity elements. Pulse broadening due to second- and third-order dispersion is theoretically investigated and compared to experimental results. Dispersion generated by the geometrical cavity arrangement is measured experimentally. Received: 19 November 2001 / Revised version: 28 January 2002 / Published online: 14 March 2002  相似文献   

9.
A miniaturized, high repetition rate, picosecond all solid state photo-induced distributed feedback (DFB) polymer-dye laser is described by applying a passively Q-switched and frequency-doubled Cr4+:Nd3+:YAG-microchip laser (pulse width Δτ=540 ps, repetition rate ν=3 kHz, pump energy Epump=0.15 μJ) as a pump source. A poly-methylmethacrylate film doped with rhodamine B dye serves as active medium. The DFB-laser pulses are temporally and spectrally characterized, and the stability of the thin polymer/dye film at high repetition rates is analyzed. The shortest DFB-laser pulses obtained have a duration of 11 ps. After the emission of 350000 pulses the intensity of the DFB-laser output has decreased by a factor of two and the pulse duration has increased by a factor of 1.2. For single DFB-laser pulses of 20-ps duration the spectral bandwidth is measured to be Δλ=0.03 nm, which is only 0.005 nm above the calculated Fourier limit assuming a Gaussian profile for the temporal shape of the pulses. Coarse wavelength tuning of the DFB laser between 590 and 619 nm is done by turning the prism. Additionally, a fine tuning of the DFB-polymer-laser wavelength is achieved by changing the temperature of the polymer/dye layer (=-0.05 nm/°C) in the range from 20 to 40 °C. Received: 1 March 2001 / Revised version: 23 May 2001 / Published online: 18 July 2001  相似文献   

10.
A passively Q-switched Yb:YAG microchip laser   总被引:1,自引:0,他引:1  
We present a diode-pumped passively Q-switched Yb:YAG microchip laser, using a semiconductor saturable absorber mirror. We obtained pulses with 1.1-μJ energy, 530-ps duration, 1.9-kW peak power, and a repetition rate of 12 kHz. The laser is oscillating in a single longitudinal mode. Received: 23 October 2000 / Published online: 7 February 2001  相似文献   

11.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

12.
Subpicosecond pulses at a fixed wavelength produced with a low-Q cavity dye laser pumped by a single, nanosecond laser (Q-switched Nd:YAG) are converted into tunable high-power sub-100 femtosecond pulses by generation, spectral selection, amplification and compression of a supercontinuum. The tunable, chirped, high-energy pulses obtained are compressed with a prism pair. Energies up to 50 J in sub-100 fs pulses were obtained in the 540 to 650 nm range using 40 mJ of the Nd: YAG-laser pumping pulses at 532 nm. The whole sub-100 fs system including the low-Q dye laser uses only one Nd:YAG laser as a pump source.  相似文献   

13.
In this paper, the multi-stage compression of picosecond pulses by cascaded quadratic nonlinearity is studied theoretically, and the dependence of pulse compression on phase-mismatch, laser intensity, and crystal characteristics has been discussed in detail. We demonstrate that the multi-stage pulse compression is much more efficient than the single-stage with a same total crystal length. Pulses as short as ∼150 fs can be generated by compressing 30-ps initial pulses in a two-stage configuration under the realistic crystal and laser conditions, and shorter pulses of ∼30 fs may be obtained by three-stage compression. Pulse compression performances with BiBO and BBO crystals are compared and discussed finally.  相似文献   

14.
The influence of the structure of holey-fiber cladding on the spectral broadening of femtosecond laser pulses is experimentally studied. These experiments demonstrate that the spectral broadening of 70-fs pulses of 800-nm Ti:sapphire laser radiation transmitted through 2- and 3-μm-pitch holey fibers can be enhanced by a factor of about 1.5 by increasing the air-filling fraction of the fiber cladding from 16 up to 65%. Received: 23 April 2001 / Revised version: 18 June 2001 / Published online: 18 July 2001  相似文献   

15.
Formation and wandering of filaments in air are studied both experimentally and numerically. Filament-center deflections are collected from 1100 shots of 190-fs and 800-nm pulses in the plane perpendicular to the propagation direction. To calculate the filament wandering in air we have developed a model of powerful femtosecond laser pulse filamentation in the Kolmogorov atmospheric turbulence and employed the Monte Carlo method to model the propagation of several hundred laser pulses. Statistical processing of experimental and numerical data shows that filament-center displacements in the transverse plane obey the Rayleigh-distribution law. Parameters of the Rayleigh distribution obtained for numerical and experimental data are close to each other. Received: 23 May 2001 / Revised version: 26 September 2001 / Published online: 29 November 2001  相似文献   

16.
An efficient emission of picosecond bunches of energetic protons and carbon ions from a thin layer spalled from a organic solid by a laser prepulse is demonstrated numerically. We combine the molecular dynamics technique and multi-component collisional particle-in-cell method with plasma ionization to simulate the laser spallation and ejection of a thin (∼20–30 nm) solid layer from an organic target and its further interaction with an intense femtosecond laser pulse. In spite of its small thickness, a layer produced by laser spallation efficiently absorbs ultrashort laser pulses with the generation of hot electrons that convert their energy to ion energy. The efficiency of the conversion of the laser energy to ions can be as high as 20%, and 10% to MeV ions. A transient electrostatic field created between the layer and surface of the target is up to 10 GV/cm. Received: 13 March 2001 / Accepted: 20 March 2001 / Published online: 20 June 2001  相似文献   

17.
Femtosecond laser pulses can locally induce structural and chemical changes in the bulk of transparent materials, opening the door to the three-dimensional fabrication of optical devices. We review the laser and focusing parameters that have been applied to induce these changes and discuss the different physical mechanisms that play a role in forming them. We then describe a new technique for inducing refractive-index changes in bulk material using a high-repetition-rate femtosecond oscillator. The changes are caused by a localized melting of the material, which results from an accumulation of thermal energy due to nonlinear absorption of the high-repetition-rate train of laser pulses. Received: 21 November 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-858/534-7697, E-mail: cschaffer@ucsd.edu RID="**" ID="**"Current address: University of California, San Diego, Department of Physics, La Jolla, CA 92 093, USA  相似文献   

18.
We study how the well-known lidar equation is affected by the use of ultra-short, high-power laser pulses. Because of the self-focusing and self-guiding, the overlap function ξ, representing the reduction fraction of the signal resulting from geometrical effects inside the experimental system, needs to be reconsidered. The losses due to multi-photon ionisation in the filament entail a heavy weakening of the return signal. We also investigate the contribution of the white-light components generated by self-phase modulation. Received: 2 January 2001 / Revised version: 8 June 2001 / Published online: 18 July 2001  相似文献   

19.
Spectral broadening of femtosecond Cr:forsterite laser pulses is enhanced due to the use of tapered fibers. Supercontinuum generation with unamplified subnanojoule femtosecond Cr:forsterite laser pulses is observed for the first time. With 40-fs 0.6-nJ pulses of 1.25-μm Cr:forsterite laser radiation coupled into a tapered fiber having a taper waist diameter of about 2 μm and a taper waist length of 90 mm, we observed the spectra spanning more than two octaves at the output of the fiber in the regime of anomalous group-velocity dispersion. This result opens the way for the creation of compact femtosecond Cr:forsterite laser plus tapered fiber systems for optical metrology and biomedical applications. Received: 23 October 2001 / Accepted: 16 January 2002 / Published online: 14 March 2002  相似文献   

20.
Visible femtosecond (fs) laser pulses have been obtained in a dye solution with a very simple traveling wave collinear configuration. A femtosecond Ti:sapphire laser (790 nm) pumps the dye solution by two-photon absorption and simultaneously generates supercontinuum, which seeds a light-amplification mechanism. Cross-correlation frequency-resolved optical gating measurements reveal a chirped structure in the dye pulse. The shortest pulse duration achieved is 170 fs and the overall energy efficiency of the process is typically 25%. Received: 22 March 2001 / Revised version: 4 July 2001 / Published online: 19 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号