首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary : High-yield synthesis of gold microplates is achieved through autoreduction of hydrogen tetrachloroaureate (III) hydrate (HAuCl4 · 3H2O) in aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer (Pluronic L64, EO13PO30EO13) at ambient conditions, in the absence of added energy, reductant, or other surfactants. The formation by the amphiphilic block copolymer of lyotropic liquid crystals (e.g., ordered cylindrical/hexagonal or lamellar phases) is not required for templating the formation of such microplates.  相似文献   

2.
This article reviews the results of recent investigations on the macroscopic (phase behavior) and microscopic (microstructure) aspects of the role of cosolvents on the self-assembly of amphiphilic copolymers. A comprehensive account of the systematic studies performed in ternary isothermal systems consisting of a representative poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer (Pluronic P105, EO37PO58EO37), water and a polar cosolvent (such as glycerol, propylene glycol or ethanol) is presented. The effect of cosolvents on the copolymer phase behavior is quantified in terms of the highest cosolvent/water ratio able to maintain the liquid crystalline structures. The effect of cosolvents on the microstructure of the lyotropic liquid crystals is quantified in terms of the degree of relative swelling per cosolvent content per copolymer content, a parameter that characterizes the given cosolvent and copolymer. The set of correlations on the cosolvent effects on the phase behavior or microstructure to the cosolvent physicochemical characteristics (such as octanol/water partition coefficient or solubility parameter) have led to the development of a hypothesis that accounts for the cosolvent effects on the self-assembly of PEO–PPO–PEO block copolymers and can be used to predict them. The rich structural diversity and the potential for a precise and convenient modification of the lyotropic liquid crystalline microstructure of the PEO–PPO–PEO block copolymers is discussed in comparison to the phase behavior of the low-molecular nonionic surfactants.  相似文献   

3.
采用2H NMR实验结合谱图线型的理论模拟方法研究了两亲性嵌段共聚物聚氧乙烯一聚氧丙烯一聚氧乙烯/氘代水/对二甲苯三元体系形成的不同液晶相的结构演化和水分子动力学行为.结果表明,对不同组分浓度的样品,2H谱线型发生明显的变化,对应体系从各向同性相、六角相和层状相间的系列结构转变.通过NMR弛豫模型获得了液晶相结构演化中序参数和分子运动相关时间的变化规律,理论模拟获得的自旋.晶格弛豫时间T1、自旋-自旋弛豫时乃等水分子动力学参数与实验测量结果吻合.结果表明:层状相四极劈裂及序参数随嵌段共聚物或二甲苯含量的增加呈现一个极大值,水分子的兀随着嵌段共聚物浓度增加而明显减小,而疋在六角相到层状相的转变中发生了明显的变化.研究表明,通过理论模拟2HNMR实验获得的谱图线型是研究液晶相结构演化和动力学的有力工具.  相似文献   

4.
Alkyldimethyl phosphine oxides (C n DMPO) as well as alkyldiethyl phosphine oxides (C n DEPO) with chain lengths of n = 10 (decyl), 12 (dodecyl), and 14 (tetradecyl) were synthesized and purified to study how the formation of microemulsions depends on the size of the headgroup and on the length of the alkyl chain. For that purpose, equal amounts of water and n-octane were taken and surfactant was added to solubilize the two solvents. The resulting fish-shaped phase diagrams for C 10DEPO, C 12DEPO, and C 14DEPO show that the longer the hydrophobic chain the more efficient the surfactant. Simultaneously, the extension of the lamellar phase (L alpha) shifts toward lower total mass fractions gamma of the surfactant, i.e., the tendency to form lyotropic liquid crystals (LCs) increases. These trends are well-known for nonionic alkyl ethylene oxides and can thus be interpreted accordingly. What is astonishing, however, is the significant influence the size of the short side chains has. Replacing two methyl groups by two ethyl groups leads to a drastic drop of the three-phase region toward lower temperatures, while the efficiency remains nearly unchanged. Moreover, the tendency to form LCs decreases significantly.  相似文献   

5.
The phase behavior and formation of self-assemblies in the ternary water/fluorinated surfactant (C(8)F(17)EO(10))/hydrophobic fluorinated polymer (C(3)F(6)O)(n)COOH system and the application of those assemblies in the preparation of mesostructured silica have been investigated by means of phase study, small angle X-ray scattering, and rheology. Hexagonal (H(1)), bicontinuous cubic (V(1)) with Ia3d symmetry, and polymer rich lamellar (L(alpha)(')) are observed in the ternary diagram. C(8)F(17)EO(10) molecules are dissolved in polymer rich aggregates, whereas (C(3)F(6)O)(n)COOH molecules are practically insoluble in the surfactant lamellar phase due to packing restrictions. Hence, two types of lamellar phases exist: one with surfactant rich (L(alpha)) and the other with polymer rich (L(alpha)(')) in the water/C(8)F(17)EO(10)/(C(3)F(6)O)(n)COOH system. As suggested by rheological measurements, worm-like micelles are present in C(8)F(17)EO(10) aqueous solutions but a rod-sphere transition takes place by solubilization of (C(3)F(6)O)(n)COOH. C(8)F(17)EO(10) acts as a structure directing agent for the preparation of hexagonal mesoporous silica by the precipitation method. The addition of (C(3)F(6)O)(n)COOH induces the formation of larger but disordered pores.  相似文献   

6.
We study the self-assembly of a new family of amphiphilic liquid crystal (LC) copolymers synthesized by the anionic ring-opening polymerization of a new cholesterol-based LC monomer, 4-(cholesteryl)butyl ethyl cyclopropane-1,1-dicarboxylate. Using the t-BuP(4) phosphazene base and thiophenol or a poly(ethylene glycol) (PEG) functionalized with thiol group to generate in situ the initiator during the polymerization, LC homopolymer and amphiphilic copolymers with narrow molecular weight distributions were obtained. The self-assemblies of the LC monomer, homopolymer, and block copolymers in bulk and in solution were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and transmission electron microscopy (TEM). All polymers exhibit in bulk an interdigitated smectic A (SmA(d)) phase with a lamellar period of 4.6 nm. The amphiphilic copolymers self-organize in solution into vesicles with wavy membrane and nanoribbons with twisted and folded structures, depending on concentration and size of LC hydrophobic block. These new morphologies will help the comprehension of the fascinating organization of thermotropic mesophase in lyotropic structures.  相似文献   

7.
Microemulsions are gaining increasing importance as templates since a great deal is known about how to tune their structure and the size of the domains. The concept of synthesizing a bicontinuous high surface area polymer is well-known, by "arresting" the oil (water) phase and polymerizing the water (oil) phase. However, a general route for the 1:1 replication of the bicontinuous structure has not been found yet. Our approach to achieving this goal entails arresting the oil phase by gelling it, i.e., by forming an organogel, and polymerizing the aqueous phase. The ternary base system water-n-dodecane-Lutensol AO5 (technical-grade nonionic n-alkyl polyglycol ether with an average molecular structure of C(13/15)E(5)) was chosen, and the organogelator 12-hydroxyoctadecanoic acid (12-HOA) as well as a polymerizable aqueous phase containing the monomer N-isopropylacrylamide (NIPAm) and the cross-linker N,N'-methylenebisacrylamide (BisAm) were added. To understand the influence of adding 12-HOA to the oil and NIPAM + BisAm to the aqueous phase on the phase behavior, phase diagrams were determined after each compositional change. The respective phase diagrams are presented and discussed in terms of their potential use as templates for new high surface area polymers.  相似文献   

8.
系统阐述了三种溶致液晶(六角状、立方状和层状液晶)的流变性质,概括了各自的流变性特点并给出了其理论模型,特别对立方相的流变学模型和层状相的剪切诱导转变作用进行了较详细的说明.讨论了因为这种转变而导致的囊泡的形成,并且在表面活性剂和嵌段共聚物中均可观察到剪切诱导的结构转变.  相似文献   

9.
Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.8 were almost zero, the mixed assemblies at the compositions with 0.1 or =0.8 were multilamellar vesicles (L(alpha)) with diameter from 2 to 10 microm. Meanwhile, dynamic light scattering (DLS) measurement revealed that the average size of the vesicles at the composition of X(DLPC)=0.3 was 633.2 nm, which is remarkably small compared to other compositions. Moreover, the mixed vesicle solution at the composition of X(DLPC)=0.3 was slightly bluish and turbid and kept its dispersion stability at 25 degrees C for more than 3 months, indicating the formation of a thermodynamically stable vesicle (L(alpha1)). These results exhibited the formation of a thermodynamically stable vesicle (L(alpha1)) with a high dispersibility from the MEL-A/DLPC mixture. The asymmetric distribution of MEL-A and DLPC in the two vesicle monolayers caused by the difference in geometrical structures is very likely to have changed their self-assembled structure from a sponge phase (L(3)) to a thermodynamically stable vesicle (L(alpha1)).  相似文献   

10.
An intermediate mesophase of lyotropic liquid crystalline structure from the ternary mixtures of glycerol monooleate, water, and ethanol was recently characterized in our lab. This mesophase, termed Q(L), consists of discrete discontinuous micelles arranged in a cubic array. The Q(L) phase can solubilize very significant loads of water-insoluble anti-inflamatory drug sodium diclofenac (Na-DFC). Close examination of the internal structures of the lyotropic liquid structure upon increasing the solubilization loads reveals the existence of three structural transitions controlled by the Na-DFC levels. Up to 0.4 wt% Na-DFC, the Q(L) structure remains intact with some influence on the hydration of the headgroups and on the intermicellar forces. However, at 0.8 to 1.2 wt% Na-DFC, the discontinuous micellar cubic phase is transformed into a more condensed mesophase of a bicontinuous cubic phase. At > or =1.2 wt% Na-DFC, the cubic phase is converted into a lamellar phase (L(alpha)). Within 5.5 to 7.3 wt% Na-DFC the mesophase is progressively transformed into a less ordered lamellar structure. At 12 wt% Na-DFC crystals tend to precipitate out. At low Na-DFC concentrations the drug behaves like a lyotropic or kosmotropic salt and can salt-out the surfactant from its water layer, but at higher levels it behaves like a hydrotropic, chaotropic salt and can salt-in the surfactant. The Na-DFC location and position within the interface as well as its polarization and partial ionization are strongly affected by its solubilization contents and the structure that it is inducing. In the cubic phase the drug is located less close to the hydration layer while once transition occurs it is exposed more to the water layer and the surfactant headgroups.  相似文献   

11.
12.
13.
刘甲雪  门永锋 《应用化学》2014,31(6):672-677
利用同步辐射小角X射线散射技术,对不同相对分子质量的水溶性高分子聚氧化乙烯(PEO)与电荷稳定的聚甲基丙烯酸甲酯(PMMA)乳胶的混合体系的相行为进行了研究。 PEO与PMMA乳胶混合体系的相行为与体系中乳胶粒子的体积分数和PEO的浓度相关。 在一定乳胶粒子体积分数下,在较低PEO浓度下,混合体系保持均匀分散性。 而当PEO浓度高于某一临界浓度时,混合体系将发生相分离,生成集团相或者形成面心立方(FCC)晶体结构。 PEO相对分子质量的大小也是影响混合体系相行为的重要因素。 当PEO的相对分子质量较高时,混合体系发生相分离所对应的临界PEO浓度较低。 除此,PEO相对分子质量对混合体系的结晶行为也有影响。 在低乳胶粒子体积分数下,较高相对分子质量的PEO容易使乳胶粒子结晶。 相反的,在较高乳胶粒子体积分数下,较低相对分子质量的PEO容易使乳胶粒子堆积形成结晶结构。  相似文献   

14.
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)–poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.  相似文献   

15.
An amphiphilic linear ternary block copolymer was synthesised in three consecutive steps via reversible addition–fragmentation chain transfer polymerisation. Oligo(ethylene glycol) monomethyl ether acrylate was engaged as a hydrophilic building block, while benzyl acrylate and 3-tris(trimethylsiloxy)silyl propyl acrylate served as hydrophobic building blocks. The resulting “triphilic” copolymer consists thus of a hydrophilic (A) and two mutually incompatible “soft” hydrophobic blocks, namely, a lipophilic (B) and a silicone-based (C) block, with all blocks having glass transition temperatures well below 0 °C. The triphilic copolymer self-assembles into spherical multicompartment micellar aggregates in aqueous solution, where the two hydrophobic blocks undergo local phase separation into various ultrastructures as evidenced by cryogenic transmission electron microscopy. Thus, a silicone-based polymer block can replace the hitherto typically employed fluorocarbon-based hydrophobic blocks in triphilic block copolymers for inducing multicompartmentalisation.  相似文献   

16.
The interfacial properties of amphiphilic linear diblock copolymers based on poly(ethylene oxide) and poly(epsilon-caprolactone) (PEO-b-PCL) were studied at the air-water (A/W) interface by surface pressure measurements (isotherms and hysteresis experiments). The resulting Langmuir monolayers were transferred onto mica substrates and the Langmuir-Blodgett (LB) film morphologies were investigated by atomic force microscopy (AFM). All block copolymers had the same PEO segment (Mn = 2670 g/mol) and different PCL chain lengths (Mn = 1270; 2110; 3110 and 4010 g/mol). Isothermal characterization of the block copolymer samples indicated the presence of three distinct phase transitions around 6.5, 10.5, and 13.5 mN/m. The phase transitions at 6.5 and 13.5 mN/m correspond to the dissolution of the PEO segments in the water subphase and crystallization of the PCL blocks above the interface similarly as for the corresponding homopolymers, respectively. The phase transition at 10.5 mN/m was not observed for the homopolymers alone or for their blends and arises from a brush formation of the PEO segments anchored underneath the adsorbed hydrophobic PCL segments. AFM analysis confirmed the presence of PCL crystals in the LB films with unusual hairlike/needlelike architectures significantly different from those obtained for PCL homopolymers.  相似文献   

17.
The spontaneous hydrogel formation of a sort of biocompatible and biodegradable amphiphilic block copolymer in water was observed, and the underlying gelling mechanism was assumed. A series of ABA‐type triblock copolymers [poly(D,L ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(D,L ‐lactic acid‐co‐glycolic acid)] and different derivatives end‐capped by small alkyl groups were synthesized, and the aqueous phase behaviors of these samples were studied. The virgin triblock copolymers and most of the derivatives exhibited a temperature‐dependent reversible sol–gel transition in water. Both the poly(D,L ‐lactic acid‐co‐glycolic acid) length and end group were found to significantly tune the gel windows in the phase diagrams, but with different behaviors. The critical micelle concentrations were much lower than the associated critical gel concentrations, and an intact micellar structure remained after gelation. A combination of various measurement techniques confirmed that the sol–gel transition with an increase in the temperature was induced not simply via the self‐assembly of amphiphilic polymer chains but also via the further hydrophobic aggregation of micelles resulting in a micelle network due to a large‐scale self‐assembly. The coarsening of the micelle network was further suggested to account for the transition from a transparent gel to an opaque gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1122–1133, 2007  相似文献   

18.
The formation of lyotropic mesophases (liquid crystals) in four binary systems n-alkyl glycosides/water was examined in dependence on surfactant concentration, temperature and the chain lengths (alkyl = heptyl, octyl, nonyl, decyl). The binary phase diagrams were established and the enthalpies of phase transitions were measured. The following phase transitions were detected by texture observation and calorimetry: hexagonal phase H, lamellar phase L, cubic phase Q, gel phase G and crystalline phase C. The positions of the corresponding regions of these phases in the phase diagram were determined. Sequence of phases and the localization of the phase regions were depended on the chain length of the alkyl group. So in the binary system n-decyl-β-D-glucoside/water the H-phase was not observed.  相似文献   

19.
The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 °C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 ? following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L(2) phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L(α)) at room temperature and up to ~ 40 °C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q(II)(D)) and gyroid (Q(II)(G)) bicontinuous cubic phases in addition to an L(α) phase.  相似文献   

20.
Due to complete proton transfer from the acid to the amine, a reaction between an equimolar mixture of dodecylamine and (meth)acrylic acid leads to the formation of dodecylammonium (meth)acrylate. The latter can be considered as a surfactant with a polymerizable organic counterion. The ternary phase diagrams of the two systems dodecylamine/acrylic acid/water and dodecylamine/methacrylic acid/water are described. Both systems can form isotropic solutions and lyotropic liquid crystalline lamellar phases. Moreover, the system with the methacrylate counterion can also form a cubic phase in the water-rich part of the phase diagram. The difference in the self-organization observed for the two systems is explained by the greater bulkiness and hydrophobicity of the methacrylate. Whereas the acrylate counterion behaves rather like a classic inorganic counterion, the methacrylate counterion resides in the outermost part of the aggregates, giving rise to a change in the surface curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号