首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
粉尘爆炸     
本文主要讨论粉尘爆炸机理及其防范。  相似文献   

2.
本文报导了在1m~3和30m~3粉尘爆炸泄压试验装置内完成的一系列点火延迟时间t_V对粉尘爆炸泄放压力P影响的试验。试验结果表明t_V对P有很大的影响,t_V0.52秒时,P值最高,而t_V1.0秒时,P已降到很低。有些实际工业环境可能根本不会产生点火延迟时间很短的播散可燃粉尘的工况,这种情况下,要求的泄压面积可以小一些。所以无论是进行粉尘爆炸泄压试验研究,还是有粉尘爆炸危险性的受限空间泄压面积的计算中,都应当考虑点火延迟时间对爆炸泄放压力的影响。  相似文献   

3.
采用瞬态阴影技术及红外光电传感器技术实验研究了沉积玉米粉的激波点火过程,并对此进行了理论分析。实验与理论分析结果表明,激波掠射沉积粉尘床后,粉尘颗粒先上扬到一定高度后才点火,颗粒的点火延迟时间与激波波前马赫数、气相氧气含量等因素有关。另外,沉积粉尘的激波点火延迟时间比相同条件下的悬浮粉尘激波点火延迟时间长。  相似文献   

4.
为了揭示煤粉尘爆炸过程中火焰传播特征,采用2种不同质量分数挥发分的煤粉在半封闭竖直燃烧管中进行实验。分别使用高速摄影装置和红外热成像装置记录火焰传播过程和空间的温度分布情况,并分析2种煤粉尘云的火焰传播速度和温度曲线。结果表明:在同等条件下,火焰在挥发分质量分数高的煤粉尘云中的传播速度和火焰温度要高于其在挥发分质量分数较低的煤粉尘云中的。煤粉尘云的体积质量和点火能量也影响着火焰的传播过程,随着煤粉尘云体积质量的增大,火焰的传播速度和火焰温度整体上呈现先增大后减小的趋势,在传播的后半段火焰速度出现震荡现象;随着点火能量的增大,火焰在煤粉尘云中的传播速度和最高温度也相应升高。通过大量的实验数据计算得到特定条件下火焰传播速度和温度的经验公式。  相似文献   

5.
密闭空间煤粉的爆炸特性   总被引:4,自引:0,他引:4  
高聪  李化  苏丹  黄卫星 《爆炸与冲击》2010,30(2):164-168
利用ISO6184/1和IEC推荐的20L球型爆炸测试装置,对4种规格的煤粉进行了系统的粉尘爆炸实验,探讨了煤粉的爆炸规律。得到了样品的爆炸下限浓度、最大爆炸压力,最大爆炸压力上升速率变化规律;分析了浓度、粒径、点火能量对煤粉爆炸猛烈度的影响。结果表明,粒径越小的煤粉,爆炸下限越小,而且在指定浓度下爆炸越猛烈。随着浓度的增大,最大爆炸压力和上升速率先增后减。样品3,峰值爆炸压力对应的浓度为400~1000g/m3,爆炸压力最大值为0.54MPa;点火头能量的增大在一定程度上促使反应更充分,从而爆炸强度更强。由于煤粉组成的特点,实验数据一定程度上说明了爆炸过程中气相燃烧的重要作用。 更多还原  相似文献   

6.
采用20 L近球形爆炸实验系统对锆粉尘云的爆炸特性开展了实验研究,分别分析了初始点火能量、点火延迟时间、粉尘云浓度3种因素对锆粉尘云爆炸强度的影响,揭示了锆粉尘云在密闭容器中的爆炸特性。在本实验条件下,结果表明:初始点火能量对锆粉尘云最大爆炸压力有显著影响,锆粉尘云最大爆炸压力随初始点火能量的增大而增大;随点火延迟时间的增加,锆粉尘云最大爆炸压力先增大后减小,存在最佳点火延迟时间;随粉尘云浓度的增大,锆粉尘云最大爆炸压力先增大后减小,存在最佳锆粉尘云浓度,得到锆粉尘云的爆炸下限为18~20 g/m3。  相似文献   

7.
为了探究点火能量对单基发射药燃烧爆炸特性的影响,自主设计了发射药燃烧爆炸试验装置。使用黑火药对单基发射药点火,开展燃烧爆炸实验。通过对铝制鉴定板及约束钢筒内壁烧蚀痕迹的分析,获得不同点火能量对单基发射药燃烧爆炸特性的影响。结果表明,点火初期约束钢筒内发射药燃烧反应不完全,反应剧烈程度较弱;随着距点火端距离增大,发射药燃烧反应剧烈程度变强,但此时反应仍不完全;在约束钢筒末端发射药反应完全。在4.0、5.0和8.0 kJ点火能量下,发射药点火初期到反应剧烈程度迅速增强的成长距离分别为54.66、 53.95和19.38 cm。20.0 kJ能量点火初期发射药反应剧烈程度较强,传播至末端时发射药发生爆燃反应,鉴定板产生明显凹痕;发射药在约束钢筒内不同位置分别发生了缓慢燃烧、快速燃烧和爆燃。  相似文献   

8.
Amyo.  PR 董务民 《力学进展》1990,20(4):538-554
粉尘爆炸的基本问题,是了解和研究湍流对爆炸发展的影响。本文评述了湍流对下列粉尘爆炸参量的影响:火焰传播速率,最大爆炸压力,最大压力上升速率,发火极限(flammability limit)或爆炸性极限(explosibility limit),最小着火能量。讨论是以定量数据为依据,在没有任何这种定量数据的情况下,则提出定性的观察结果。说明了大尺度爆炸筒跟小尺度爆炸筒的试验结果不一致的原因。  相似文献   

9.

为了研究装置点火延迟时间对不同浓度粉尘爆炸压力和压力上升速率的影响,以铝粉为介质在5L圆柱形爆炸装置中进行系列爆炸实验。结果表明:装置点火延迟时间对铝粉爆炸压力和压力上升速率有十分显著的影响,且存在一个最佳点火延迟时间,此时最大爆炸压力最大;随着铝粉浓度的增加,最佳点火延迟时间先增加后保持不变。最佳点火延迟时间下的最大爆炸压力和最大压力上升速率明显高于点火延迟时间固定为60s时的。相对粉尘不同浓度均采用固定点火延迟时间,不同浓度时采用最佳点火延迟时间,所测得的粉尘最大爆炸压力和最大压力上升速率明显符合实际。

  相似文献   

10.
武林湲  于立富  王天枢  孙威  徐建航  李航 《爆炸与冲击》2022,42(1):015401-1-015401-10
为探究油页岩粉尘的爆炸特性,以龙口(Longkou, LK)、茂名(Maoming, MM)、桦甸(Huadian, HD)和抚顺(Fushun, FS)4种油页岩粉尘为研究对象,采用20 L球形爆炸装置,对这4种油页岩粉尘样品开展系统的爆炸实验,探讨油页岩粉尘的粉尘云质量浓度、粒径、挥发分、灰分、氧含量等对其爆炸特性的影响。结果表明:挥发分含量越高,油页岩粉尘的最大爆炸压力pmax、最大压力上升速率(dp/dt)max越高,爆炸下限越低;挥发分和灰分对油页岩粉尘云爆炸分别有显著的促进和抑制作用。在37.52~106.43 μm粒径范围内,这4种油页岩粉尘样品的pmax和(dp/dt)max均随其粉尘粒径的增大而降低,且到达最大爆炸压力的时间逐步缩短,说明小粒径油页岩粉尘较高的脱挥发速率能提高爆炸的反应程度。当粉尘质量浓度在400~2 500 g/m3范围内时,pmax和(dp/dt)max均随粉尘云质量浓度的升高呈现先升高后降低的变化趋势,高于最佳粉尘云质量浓度(1 000 g/m3)时略有下降,但维持在较高水平,表明超过最佳质量浓度的粉尘云引燃后仍有较强的破坏力;LK样品的pmax和(dp/dt)max均最高,分别为0.61 MPa和29.32 MPa/s,与挥发分含量相当的褐煤在同一水平,其爆炸下限为200 g/m3,在4种样品中最低,高于挥发分含量相当的褐煤;在N2惰化条件下,LK样品的pmax和(dp/dt)max均随环境氧含量的降低而降低,当氧含量降至15%时,系统不再发生爆炸,极限氧含量为16%。  相似文献   

11.
基于标准20 L球形爆炸装置,在相同测试条件下, 分别测量了石松子粉尘、甲烷和不同浓度配比的甲烷/石松子粉尘混合体系爆炸下限,并将测试结果与Le Chatelier’s law、Bartknecht curve、Jiang method等混合体系爆炸下限预测结果进行了对比。结果表明:低于爆炸下限的甲烷和低于爆炸下限的石松子粉尘混合后仍具有爆炸危险性。石松子粉尘爆炸下限随混合体系中甲烷体积分数的增高而减小。Le Chatelier’s law、Bartknecht curve、Jiang method均不能准确预测甲烷/石松子粉尘混合体系爆炸下限。Le Chatelier’s law对甲烷体积分数φ与甲烷爆炸下限φL之比φ/φL<0.5的混合体系爆炸下限的预测值偏小,而对φ/φL>0.5的混合体系预测值偏大;Bartknecht curve在预测φ/φL>0.5的混合体系爆炸下限时适用性较好,而对于φ/φL<0.5的混合体系预测值偏小;Jiang method不适用于预测甲烷/石松子粉尘混合体系爆炸下限。  相似文献   

12.

在矩形管道粉尘爆炸装置中开展系列实验,系统研究了点火延迟时间、粉尘粒度及粉尘浓度对铝粉尘爆炸过程中最大爆炸压力和最大爆炸压力上升速率的影响。研究结果表明:不同的点火延迟时间对铝粉尘爆炸压力有显著影响,随着点火延迟时间由小变大,最大爆炸压力和最大爆炸压力上升速率呈现先增大后减小的趋势,且不同粒径的铝粉尘最大爆炸压力对应有不同点火延迟时间。随铝粉粒度的减小,最大爆炸压力和最大爆炸压力上升速率会呈现出先增大后减小的变化规律。铝粉最大爆炸压力和最大爆炸压力上升速率随浓度的增加均表现为先变大后减小的趋势,即铝粉浓度在特定数值时会使其爆炸威力最强。

  相似文献   

13.
将N2和CO2按一定比例混合,从极限氧体积分数、爆炸极限和抑爆效果3个方面研究了N2/CO2混合气体对甲烷爆炸的影响。结果表明:(1)随着惰性混合气中N2含量的增加,极限氧体积分数呈线性下降;(2)任何配比的惰性混合气对爆炸上、下限的影响都可以近似认为是线性变化的;(3)惰性混合气中CO2含量越高,抑爆效果越好。同时,得到的拟合公式能预测N2和CO2任何配比时甲烷的爆炸极限。实验结果能对甲烷实际生产时的惰化处理提供基础数据和依据。  相似文献   

14.
基于现场实测爆破振动数据,根据爆破振动信号具有短时非平稳的特点,采用小波包分析技术对不同爆炸参量(爆心距、最大段药量和微差雷管段数)下产生的爆破振动信号进行小波包能量谱分析,获得了爆破振动信号不同频带的能量分布,研究了不同爆炸参量下的爆破振动信号能量分布特征,从爆破振动信号能量角度探讨了不同爆炸参量下爆破地震波的衰减规律,为研究爆破地震效应提供了一种新的分析技术。  相似文献   

15.
为预测煤尘爆炸能量,基于量纲分析理论建立煤尘爆炸能量预测模型。选取爆炸能量E、空气密度ρ和大气压强p的量纲为导出量纲。根据量纲分析Π定理得出含有待定参数λ的具有普适性的能量预测模型。通过小型煤尘爆炸性实验设计,测定10次爆炸最长火焰长度平均值l0、10次最长火焰长度出现时间平均值t0与该小型煤尘爆炸中释放能量E0,确定模型中参数λ为0.467。对模型变量t、E、l的函数关系进行合理性检验。通过实测的15组不同时刻的火焰长度进行模型变量t、l幂指关系检验。检验结果表明:量纲选取完备,预测模型科学合理。  相似文献   

16.
为研究不同变质程度煤尘爆炸压力特性变化规律,以最大压力pmax和最大压力上升速率(dp/dt)max表征压力特性,使用近球形煤尘爆炸装置对褐煤、长焰煤、不黏煤和气煤的爆炸压力特性变化规律展开分析。研究发现:在4种煤尘样品中,褐煤的pmax和(dp/dt)max均最大,分别达0.71 MPa和65.69 MPa/s。随变质程度增大,长焰煤、不黏煤和气煤的pmax和(dp/dt)max均明显减小,说明以爆炸压力特性为标准,4种煤尘爆炸强度由高到低依次是褐煤、长焰煤、不黏煤和气煤。通过对比爆炸前后煤尘挥发分含量,得出参与爆炸的挥发分含量所占质量分数为46.28%~68.19%。在喷尘压力 p0=2.0 MPa,点火延迟时间t0=100 ms时,4种煤尘pmax值均达最大,分别为0.71、0.60、0.55和0.47 MPa。褐煤、不黏煤和气煤在 p0=2.0 MPa,t0=80 ms时(dp/dt)max达最大,而长焰煤则在 p0=2.0 MPa,t0=100 ms时(dp/dt)max达到最大。  相似文献   

17.

在长12 m的无缝不锈钢直管中,通过改变初始点火能量,探究了点火能对封闭管道内丙烷-空气混合气体爆炸传播特性和激波对管壁动态加载的影响。结果表明,初始点火能对预混气体爆炸火焰传播规律以及管壁的动态响应有显著影响:点火能越大,爆炸越剧烈,爆炸压力峰值压力和管壁最大应变就越大,且压力波和管壁应变的发展一致。火焰在传播过程中受到管道末端反射波的作用会发生短暂熄灭和复燃;管壁承受冲击波加载,应变信号主要分布在0~781.25 Hz,管壁最大应变率大于10-3 s-1,实验工况下管壁应变属动态响应。

  相似文献   

18.
镁粉尘云最低着火温度的实验测试   总被引:1,自引:0,他引:1  
采用标准装置Godbert-Greenwald恒温炉测试了不同条件下镁粉尘云最低着火温度。实验测试结果显示:D50为6、47、104、173 m时镁粉尘云最低着火温度分别为480、520、620、700 ℃;选取D50为6 m的镁粉,在分散压力恒定为0.1 MPa时,镁粉浓度由424 g/m3变化到5 085 g/m3,粉尘云最低着火温度由600 ℃降低到480 ℃;而粉尘质量恒定为0.3 g时,分散压力从0.1 MPa增加到0.2 MPa,粉尘云最低着火温度由540 ℃升高到580 ℃。还分析了镁粉粒径、浓度及分散压力对粉尘云最低着火温度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号