首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of conducting thin-film solid electrolytes based on poly (vinyl alcohol)/ poly (vinyl pyrrolidone) (PVA/PVP) polymer blend was prepared by the solution casting technique. PVA and PVP were mixed in various weight percent ratios and dissolved in 20 ml of distilled water. The samples were analyzed by using impedance spectroscopy in the frequency range between 100 Hz and 1 MHz. The PVA/PVP system with a composition of 80% PVA and 20 wt.% PVP exhibits the highest conductivity of (2.2±1.4) × 10−7 Scm−1. The highest conducting PVA/PVP blend was then further studied by adding different amounts of potassium hydroxide (KOH) ionic dopant. Water has been used as solvent to prepare PVA/PVP-KOH based alkaline solid polymer blend electrolyte films. The conductivity was enhanced to (1.5 ± 1.1) × 10−4 Scm−1 when 40 wt.% KOH was added. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

2.
The lithium salt (x) (x=LiAsF6, LiPF6) was complexed with a blend of poly(vinyl chloride) (PVC) / poly(methyl methacrylate)(PMMA) and plasticized with a combination of ethylene carbonate(EC) and propylene carbonate(PC). The electrolyte films were prepared using doctor blade method and subjected to ionic conductivity measurements at nine different temperatures viz.,-30, -15, 0, 15, 30, 40, 50, 60 and 70 °C. The films were also subjected to TG - DTA and FT-IR analysis. The effect of salt on ionic conductivity is discussed. A 75:25 PMMA/PVC blend at 60 % plasticizer content has been found to possess optimal properties in terms of ionic conductivity, thermal and electrochemical stability.  相似文献   

3.
Solid polymer electrolyte films based on poly (ethylene oxide) PEO complexed with NaClO3 have been prepared by a solution-cast technique. The solvation of Na+ ion with PEO is confirmed by XRD and IR studies. Measurements of the a.c. conductivity in the temperature range 308 – 378 K and the transference numbers have been carried out to investigate the charge transport in this polymer electrolyte system. Transport number data show that the charge transport in this polymer electrolyte system is predominantly due to ions. The highest conductivity (2.12.10−4 S/cm) has been observed for the 70:30 composition. Using the polymer electrolyte solid state electrochemical cells have been fabricated. The various cell parameters are evaluated and reported.  相似文献   

4.
F. S. Chia  Y. Zheng  J. Liu  G. Ungar  P. V. Wright 《Ionics》2002,8(3-4):201-209
AC and DC conductivities of complexes of Li salts with the amphiphilic helical polyether poly[2,5,8,11,14-pentaoxapentadecamethylene(5-hexadecyloxy-1,3-phenylene)] (I) (Type A complexes) and blends of I with copolymers of poly(tetramethylene oxide) oligomer coupled with either — (CH2-)- (polymer IIC1) or — (CH2)12 — (IIC12) (Type C complexes) are reported. Whereas Type A complexes give reversible AC impedance plots log σ vs. 1/T plots which are ca. 10−7 S cm−1 at ambient, the Type C blends rise to ca. 10−3 S cm−1 at 100 °C and on cooling to ambient maintain this high level. In Type C systems with IIC12 this transformation is stable and permanent. Optical microscopy reveals phase separation of extensive well-organised lamellae of the Type A phase from the Type C blend following heating. Polymer II resides in thin layers in the interlamellar spaces serving to transfer ions between them. DC data at ambient temperatures for Li | I : II : Li salt | Li cells indicate conductivities 10−3 to 10−2 S cm−1 over extended periods (24 hours). Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

5.
Hema  M.  Tamilselvi  P.  Hirankumar  G. 《Ionics》2017,23(10):2707-2714

In recent years, solid polymer electrolytes have been extensively studied due to its flexibility, electrochemical stability, safety, and long life for its applications in various electrochemical devices. Interaction of LiCF3SO3 and TiO2 nanofiller in the optimized composition of PVA:PVdF (80:20—system-A possessing σ ~ 2.8 × 10−7 Scm−1 at 303 K) blend polymer electrolyte have been analyzed in the present study. LiCF3SO3 has been doped in system-A, and the optimized LiCF3SO3 doped sample (80:20:15-system-B possessing σ ~ 2.7 × 10−3 Scm−1 at 303 K) has been identified. The effect of different concentration of TiO2 in system-B has been analyzed and the optimized system is considered as system-C (σ ~ 3.7 × 10−3 Scm−1 at 303 K). The cost effective, solution casting technique has been used for the preparation of the above polymer electrolytes. Vibrational, structural, mechanical, conductivity, thermal, and electrochemical properties have been studied using FTIR, XRD, stress-strain, AC impedance spectroscopic technique, DSC and TGA, LSV, and CV respectively to find out the optimized system. System-C possessing the highest ionic conductivity, higher tensile strength, low crystallinity, high thermal stability, and high electrochemical stability (greater than 5 V vs Li/Li+) is well suitable for lithium ion battery application.

  相似文献   

6.
《Solid State Ionics》2006,177(3-4):253-256
Structural and ionic conductivity of PEO blend PEG with KI solid polymer electrolyte system is presented. The polymer PEG showed miscible with the high molecular weight polymer PEO. The X-ray diffraction patterns of PEO/PEG with KI salt indicated the decrease in the degree of crystallinity with increasing concentration of the salt. The DSC measurements of PEO/PEG:KI polymer electrolyte system showed that the melting temperature is shifted towards the lower temperature with increase of the salt concentration. Optical micrographs demonstrated that the spherulites of different sizes are present along with dark regions between the spherulites for lower salt compositions. With increase of salt concentration more amorphous regions are observed. The significance of blend is the increase of one order in ionic conductivity when compared to without blend PEO electrolyte.  相似文献   

7.
Solid polymer electrolytes (SPEs) composed of poly(vinylidene fluoride) (PVdF)-poly(vinyl chloride) (PVC) complexed with lithium perchlorate (LiClO4) as salt and ethylene carbonate (EC)/propylene carbonate (PC) as plasticizers were prepared using solvent-casting technique, with different weight ratios of EC and PC. The amorphicity and complexation behavior of the polymer electrolytes were confirmed using X-ray diffraction (XRD) and FTIR studies. TG/DTA and scanning electron microscope (SEM) studies explained the thermal stability and surface morphology of electrolytes, respectively. The prepared thin films were subjected to AC impedance measurements as a function of temperature ranging from 302 to 373 K. The temperature-dependence conductivity of polymer films seems to obey VTF relation.  相似文献   

8.
The ionic conductivity of polycrystalline lithium imide has been determined from -40 to 105°C using AC techniques and comples plane analysis. The ionic conductivity is 3 × 10-4 Ω-1 cm-1 at 25°C, with an activation enthalpy of 56±1 kJ/mole. The stability has been estimated to be about 0.7 V.  相似文献   

9.
Ion-conducting solid polymer blend electrolytes based on polyvinyl chloride (PVC)/poly methyl methacrylate (PMMA) complexed with sodium perchlorate (NaClO4) were prepared in various concentrations by solution cast technique. The features of complexation of the electrolytes were studied by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. DC conductivity of the films was measured in the temperature range 303–398 K. Transference number measurements were carried out to investigate the nature of charge transport in the polymer blend electrolyte system. The electrical conductivity increased with increasing dopant concentration, which is attributed to the formation of charge transfer complexes. The polymer complexes exhibited Arrhenius type dependence of conductivity with temperature. In the temperature range studied, two regions with different activation energies were observed. Transference number data showed that the charge transport in this system is predominantly due to ions. Optical properties like absorption edge, direct band gap, and indirect band gap were estimated for pure and doped films from their optical absorption spectra in the wavelength region 200–600 nm. It was found that the energy gap and band edge values shifted to lower energies on doping with NaClO4 salt. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamil Nadu, India, Dec. 7–9, 2006.  相似文献   

10.
Poly(methylmetacrylate)/poly(ethylene oxide) (PMMA/PEO) based polymer electrolytes were synthesized using the solution cast technique. Four systems of PMMA/PEO blends based polymer electrolytes films were investigated:
  1. PMMA/PEO system,
  2. PMMA/PEO + ethylene carbonate (EC) system,
  3. PMMA/PEO + lithium hexafluorophosphate (LiPF6) system and
  4. PMMA/PEO + EC + LiPF6 system.
The polymer electrolytes films were characterized by Impedance Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The FTIR spectra show the complexation occurring between the polymers, plasticizer and lithium salt. The FTIR results give further insight in the conductivity enhancement of PMMA/PEO blends based polymer electrolytes.  相似文献   

11.
Chitosan acetate–adipic acid film polymer electrolytes have been prepared by the solution cast technique. The highest conductivity is 1.4 × 10−9 S cm−1 for 35 wt.% of adipic acid at room temperature. The sample with highest conductivity has the lowest activation energy. Calculations using the Rice and Roth model provide number of mobile ions, η. The conductivity is dependent on the diffusion coefficient and mobility.  相似文献   

12.
S. Rajendran  O. Mahendran 《Ionics》2001,7(4-6):463-468
Blend based polymer electrolytes composed of poly (methyl methacrylate) (PMMA), poly(vinylalcohol) (PVA) and LiClO4 are prepared using solvent casting technique. The polymer films are characterized by XRD and FTIR studies to determine the molecular environment for the conducting ions. These polymer films have been investigated in terms of ionic conductivity using the results of impedance studies. The influence of the blend composition on the electrochemical behaviour is also discussed. The highest room temperature conductivity obtained for the film consisting of PMMA, PVA, LiClO4 and DMP is 0.06×10−3 S/cm at 303 K. The PMMA-PVA blend based polymer electrolytes look very desirable and promising for lithium battery applications.  相似文献   

13.
Ionic conduction in plasticized PVC/PAN blend polymer electrolytes   总被引:1,自引:0,他引:1  
Blended polymer electrolytes with poly(vinyl chloride) (PVC)–poly(acrylonitrile) (PAN) were prepared with different plasticizer concentrations and constant lithium perchlorate (LiClO4) ratio by the solution-casting technique. The structure and complexation of the prepared films were studied by X-ray diffraction and Fourier transform infrared spectroscopy. The effect of the plasticizer on the ionic conduction in these electrolytes was investigated using alternating current impedance measurement and discussed. The temperature-dependant ionic conductivity was carried out in the range 302–373 K. The prepared films were also examined by thermogravimetry/differential thermal analysis to determine their thermal stability.  相似文献   

14.
In the present study, a kind of solid polymer electrolyte (SPE) based on poly(vinylidene difluoride-co-hexafluoropropylene)/poly(methyl methacrylate) blends was prepared by a casting method to solve the safety problem of lithium secondary batteries. Owing to being plasticized with a room temperature ionic liquid, N-butyl-N′-methyl-imidiazolium hexafluorophosphate, the obtained SPE shows a thermal decomposition temperature over 300°C and an ionic conductivity close to 10−3 S cm−1. The SPE-3 sample, in which the weight of two polymers is equivalent, possesses an ionic conductivity of 0.45 × 10−3 S cm−1 at 25°C and presents an electrochemical window of 4.43 V. The ionic conductivity of the SPE-3 is as high as 1.73 × 10−3 S cm−1 at 75°C approaching to that of liquid electrolyte. The electrochemical performances of the Li/LiFePO4 cells confirmed its feasibility in lithium secondary batteries.  相似文献   

15.
The preparation and characterization of composite polymer electrolytes of PMMA-LiClO4-DMP for different concentrations of CeO2 have been investigated. FTIR studies indicate complex formation between the polymer, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy are found to depend upon the CeO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

16.
This investigation is an attempt to improve our understanding of the thermal properties of PMMA (Polymethyl methacrylate) by using PS(Polystyrene); the miscibility of PMMA/PS polymer blend is studied. Our work aims to study the impact of the percentage of PMMA/PS polymer blend on the simulated values of the glass transition temperature (Tg) using the dilatometric method. Compass was chosen as the force field (second category force field). The results reveal a single value of the glass transition temperature Tg that is found for all the curves of the PMMA/PS blend system (molar ratio: (50:50, 60:40, 54:46 and 80:20)); this could be a good criterion for predicting the miscibility. Additionally, the solubility parameters of PMMA and PS are calculated and used to obtain the Flory–Huggins parameter, and the morphology of our polymer blend is simulated using the dissipative particle dynamics method (DPD). Our results exhibit an increase in the Tg of PMMA whenever PS is added; hence, we can confirm the miscibility of the PMMA/PS polymer system.  相似文献   

17.
Dr. S. Rajendran  T. Uma 《Ionics》2001,7(1-2):122-125
Poly (vinylchloride) (PVC)-LiBF4 polymer electrolytes plasticized with DBP in different mole ratios have been studied by FTIR and Impedance Spectroscopic techniques. The complexation has been confirmed from FTIR studies. The maximum room temperature conductivity (2.1·.10−7 S·.cm−1) has been observed for PVC-LiBF4-DBP (10-5-85 mole%) complex. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

18.
Lithium ionic conductivity of Li3N single crystals is reported for temperatures from 120 K to 350 K. The intrinsic ionic conductivity is rather small (< 10?6 Ω?1 cm?1 at 300 K) and shows no strong anisotropy. The activation energy is near 0,6 eV. It is shown that hydrogen is the critical impurity in the crystals grown and studied at this laboratory. The relative impurity concentration is determined from infrared transmission measurements near 3130 cm?1. An estimate for absolute values is obtained from dielectric studies. Increases in ionic conductivity with hydrogen doping by a factor 5000 are reported for E⊥c but no significant effects are found for E6c. The proposed defect is an impurity-vacancy complex consisting of an NH?? and a lithium vacancy.  相似文献   

19.
《Solid State Ionics》2006,177(26-32):2679-2682
The polymer electrolytes comprising blend of poly(vinyl acetate) (PVAc) and poly(methylmethacrylate) (PMMA) as a host polymer and LiClO4 as a dopant are prepared by solution casting technique. The amorphous nature of the polymer–salt complex has been confirmed by XRD analysis. The DSC thermograms show two Tg's for PVAc–PMMA blend. A decrease in Tg with the LiClO4 content reveals the increase of segmental motion. Conductance spectra results are found to obey the Jonscher's power law and the maximum dc conductivity value is found to be 1.76 × 10 3 S cm 1 at 303 K for the blend polymer complex with 20 wt.% LiClO4, which is suitable for the Li rechargeable batteries. The conductivity–temperature plots are found to follow an Arrhenius nature. The dc conductivity is found to increase with increase of salt concentration in the blend polymer complexes.  相似文献   

20.
In the present study, blend ionic conducting membranes formed by poly(methylmethacrylate (PMMA) / poly(vinilydenefluoride) (PVDF) (blend ratio PMMA/PVdF=80/20), lithium perchlorate (LiClO4) as a salt and a mixture of ethylene carbonate (EC)-propylene carbonate (PC) as plasticizer are prepared and characterized by impedance spectroscopy and dynamic rheological experiments. We compared the results obtained on the blends with those on PMMA gel-based polymer electrolytes incorporating the same EC/PC mixture of plasticizer and the same quantities of salt. The main focus of this study is to illustrate the rheological data of the gels and blends electrolytes to point up their mechanical stability with the temperature in sight of the technological application. The conductivity values are reported in the 20–100 °C temperature range for different lithium salt contents, while the rheological behaviour has been recorded up to 140 °C. Paper presented at the Patras Conference on Solid State Ionics — Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号