首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The low-energy-level macroscopic wave functions of the Bose-Einstein condensate (BEC) trapped in a symmetric double-well and a periodic potential are obtained by solving the Gross-Pitaevskii equation numerically. The ground state tunnel splitting is evaluated in terms of the even and odd wave functions corresponding to the global ground and excited states respectively. We show that the numerical result is in good agreement with the analytic level splitting obtained by means of the periodic instanton method.  相似文献   

2.
We use the coherent state path integral and a angular model for the spin to solve the generalized Jaynes-Cummings model with a pseudo-hermitian Hamiltonian and nonlinear Kerr cavity. The propagators are given explicitly as perturbation series. These are summed up exactly. The energy spectrum and the bi-orthonormal basis of states are deduced.  相似文献   

3.
This is the fourth paper in a series devoted to the large-order properties of anharmonic oscillators. We attempt to draw a connection of anharmonic oscillators to field theory, by investigating the partition function in the path integral representation around both the Gaussian saddle point, which determines the perturbative expansion of the eigenvalues, as well as the nontrivial instanton saddle point. The value of the classical action at the saddle point is the instanton action which determines the large-order properties of perturbation theory by a dispersion relation. In order to treat the perturbations about the instanton, one has to take into account the continuous symmetries broken by the instanton solution because they lead to zero-modes of the fluctuation operator of the instanton configuration. The problem is solved by changing variables in the path integral, taking the instanton parameters as integration variables (collective coordinates). The functional determinant (Faddeev–Popov determinant) of the change of variables implies nontrivial modifications of the one-loop and higher-loop corrections about the instanton configuration. These are evaluated and compared to exact WKB calculations. A specific cancellation mechanism for the first perturbation about the instanton, which has been conjectured for the sextic oscillator based on a nonperturbative generalized Bohr–Sommerfeld quantization condition, is verified by an analytic Feynman diagram calculation.  相似文献   

4.
At low temperatures the Neel vector in a small antiferromagnetic particle can possess quantum coherence between the classically degenerate minima. In some cases, the topological term in the magnetic action can lead to destructive interference between the symmetry-related trajectories for the half-integer excess spin antiferromagnetic particle. By studying a macroscopic quantum coherence problem of the Neel vector with biaxial crystal symmetry and a weak magnetic field applied along the hard axis, we find that the quenching of tunnel splitting could take place in the system without Kramers' degeneracy. Both the Wentzel-Kramers-Brillouin exponent and the pre-exponential factors are found exactly for the tunnel splitting. Results show that the tunnel splitting oscillates with the weak applied magnetic field for both the integer and half-integer excess spin antiferromagnetic particles, and vanishes at certain values of the field. All the calculations are performed based on the two sublattices model and the instanton method in spin-coherent-state path integral. Received: 24 July 1997 / Accepted: 30 September 1997  相似文献   

5.
Definition and formulas for harmonic oscillator coherent states and spin coherent states are reviewed in detail. The path integral formalism and its relation with the partition function of a system are also reviewed. The harmonic oscillator coherent state path integral is evaluated exactly at the discrete level and then used to find its continuum limit using various regularizations. The computation of the path integral for a particle of spin s put in a constant magnetic field is carried out using harmonic oscillator coherent states and spin coherent states, with a careful analysis of infinitesimal terms (in 1/N where N is the number of time slices) appearing in the Lagrangian. A mapping of the spin system into a CP1 model is shown explicitly. The theory of a spinless particle in the field of a magnetic monopole and its relation with the spin system are explained. The equivalence of these two models is established up to infinitesimal order by the introduction of an external field correction. This gives a new representation of a coherent state path integral in terms of a more familiar Feynman path integral.  相似文献   

6.
The quantum interference effects induced by the Wess-Zumino term, or Berry phase are studied theoretically in resonant quantum coherence of the magnetization vector between degenerate states in nanometer-scale single-domain ferromagnets in the absence of an external magnetic field. We consider the magnetocrystalline anisotropy with trigonal, tetragonal and hexagonal crystal symmetry, respectively. By applying the periodic instanton method in the spin-coherent-state path integral, we evaluate the low-lying tunnel splittings between degenerate excited states of neighboring wells. And the low-lying energy level spectrum of mth excited state are obtained with the help of the Bloch theorem in one-dimensional periodic potential. The energy level spectrum and the thermodynamic properties of magnetic tunneling states are found to depend significantly on the total spins of ferromagnets at sufficiently low temperatures. Possible relevance to experiments is also discussed. Received 15 December 1999  相似文献   

7.
Quantum phase interference and spin-parity effects are studied in biaxial molecular magnets in a magnetic field at an arbitrarily directed angle.The calculations of the ground-state tunnel splitting are performed on the basis of the instanton technique in the spin-coherent-state path-integral representation,and complemented by exactly numerical diagonalization.Both the Wentzel-Kramers-Brillouin exponent and the pre-exponential factor are obtained for the entire region of the direction of the field.Our results show that the tunnel splitting oscillates with the field for the small field angle,while for the large field angle the oscillation is completely suppressed.This distinct angular dependence,together with the dependence of the tunnel splitting on the field strength,provides an independent test for spin-parity effects in biaxial molexular magnets.The analytical results for the molecular Fes magnet are found to be in good agreement with the numerical simulations,which suggests that even the molecular magnet with total spin S=10 is large enough to be treated as a giant spin system.  相似文献   

8.
A consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with short-range antiferromagnetic order was developed on the basis of the path integral for the spin coherent states. We presented the Lagrangian of the theory in the form that is explicitly invariant under rotations and found natural variables in terms of which one can construct a perturbation theory. The short-wavelength spin fluctuations are similar to the ones in spin-wave theory, and the long-wavelength spin fluctuations are governed by the nonlinear sigma model. We also demonstrated that the short-wavelength spin fluctuations should be considered accurately in the framework of the discrete version in time of the path integral. In the framework of our approach, we obtained the response function for the spin fluctuations for the whole region of the frequency ω and the wave vector k and calculated the free energy of the system.  相似文献   

9.
陈芝得  张树群 《中国物理》2000,9(11):848-854
Numerical study on tunneling splitting in biaxial spin systems is done by performing diagonalization of the Hamilton operator. It is found that the calculated energy splitting agrees quantitatively with theoretical prediction of instanton method. Our result shows that both the instanton method and the large spin limit work well for the total spin around 10. By including the fourth-order term in Hamiltonian, experimental observation can be re-covered quantitatively.  相似文献   

10.
The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.  相似文献   

11.
A new complete set of spin coherent states is constructed and applied to study the time evolution matrix of one-dimensional antiferromagnet by means of the path integral method. A topological term expressed as the superposition of the Berry's phase of individual site is obtained. The superposition is not the Berry's phase of the system but the A-A phase of the spin chains, and the equation obtained by our path integral method is consistent with that given by others.  相似文献   

12.
A Berry phase in the path integral for spin gives rise to an interference effect in the tunneling of a biaxially symmetric spin Hamiltonian. As the magnetic field applied along a hard axis is varied, the tunnel splitting between the two lowest energy states oscillates, with field values where it is completely quenched. This Hamiltonian is realized in Fe8-tacn molecules, where these oscillations have just now been seen and provide, in fact, strong evidence for tunneling below 0.36 K in the first place.  相似文献   

13.
An essentially exact approach to compute the wave function in the time-dependent many-boson Schr?dinger equation is derived and employed to study accurately the process of splitting a trapped condensate. As the trap transforms from a single to double well the ground state changes from a coherent to a fragmented state. We follow the role played by many-body excited states during the splitting process. Among others, a "counterintuitive" regime is found in which the evolution of the condensate when the splitting is sufficiently slow is not to the fragmented ground state, but to a low-lying excited state which is a coherent state. Experimental implications are discussed.  相似文献   

14.
We have developed a consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with a short range antiferromagnetic order on the basis of the path integral for spin coherent states. In the framework of our approach we have obtained the response function for the spin fluctuations for all values of the frequency ω and the wave vector k and have calculated the free energy of the system. We have also reproduced the known results for the spin correlation length in the lowest order in 1/N. We have presented the Lagrangian of the theory in a form which is explicitly invariant under rotations and found natural variables in terms of which one can construct a natural perturbation theory. The short wave spin fluctuations are similar to those in the spin wave theory and they are on the order of the smallness parameter 1/2s where s is the spin magnitude. The long-wave spin fluctuations are governed by the nonlinear sigma model and are on the order of the smallness parameter 1/N, where N is the number of field components. We also have shown that the short wave spin fluctuations must be evaluated accurately and the continuum limit in time of the path integral must be performed after the summation over the frequencies ω.  相似文献   

15.
We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.  相似文献   

16.
In this review I present a method to estimate the large order behavior of perturbation theory in quantum mechanics and field theory. The basic idea, due to Lipatov, is to relate the large order behavior to (in general complex) instanton contributions to the path integral representation of Green's functions. I explain the method first in the case of a simple integral and of the anharmonic oscillator and recover the results of Bender and Wu. I apply it then to the φ4 field theory. I study general potentials and boson field theories. I show, following Parisi, how the method can be generalized to theories with fermions. Finally I outline the implications of these results for the summability of the series. In particular I explain a method to sum divergent series based on a Borel transformation. In a last section I compare the larger order behavior predictions to actual series calculation. I present also some numerical examples of series summation.  相似文献   

17.
We report on a method for single-shot readout of spin states in a semiconductor quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. The method is analyzed theoretically, and compared to a previously used method. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.  相似文献   

18.
We discuss the exact plaquette-ordered ground states of the generalized Hubbard model on the Kagomé lattice for several fillings, by constructing the Hamiltonian as a sum of products of projection operators for up and down spin sectors. The obtained exact ground states are interpreted as Néel ordered states on the bond-located electrons. We determine several parameter regions of the exact ground states, and calculate the entanglement entropy. We examine the above results by numerical calculations based on exact diagonalization and density-matrix renormalization group methods.  相似文献   

19.
We apply the quasiparticle picture to the interaction between a fermion and a boson field using a coherent states representation of theS matrix. Its matrix elements between single particle states are explicitly evaluated in terms of a path integral. The method is extended to include dispersion in the excitation spectrum and applied to the case of a metal with electron-hole symmetry. Its relation with perturbation theory is discussed and the second order perturbative result for polarons in insulators is recovered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号