首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite recent progress toward gender equity in science and mathematics education, the underachievement of low‐income African American girls remains a challenge when compared with their white counterparts. Furthermore, the causes of this persistent underachievement have not been explored thoroughly. We have initiated a three‐year longitudinal study of how African American girls position themselves in relation to science and mathematics learning from fifth to seventh grade, including the impact, if any, of the positioning of teachers, counselors, and parents on this process. In this article, we share findings examining science and mathematics teachers' actions and perceptions and their positioning of African American girls. This qualitative study used an interpretive design with multiple data sources including classroom observations, interviews, and field notes. Findings reveal that school‐wide policies and teachers' autonomous decisions impact the regularity of science and mathematics instruction, and that teachers do not always conceptualize the girls as science and mathematics achievers, positioning them in negative ways.  相似文献   

2.
This case study investigates students' perspectives on their mathematics learning experiences and identity constructions, in the context of transition to secondary school. In-depth, semi-structured interviews were conducted with six girls, halfway through their first year at their new school. Thematic analysis and discourse analysis were used to interpret and deconstruct their narratives. The girls' stories contribute to our understandings of how confidence in mathematics is discursively constructed. The stories also clarify the importance of gaining a sense of belonging in the transition from primary to secondary school mathematics. Through promoting this belonging within the mathematics classroom, teachers may engender confident performances in class and, through this, contribute to the construction of positive mathematical identities.  相似文献   

3.
Capitalizing on Emerging Technologies: A Case Study of Classroom Blogging   总被引:1,自引:0,他引:1  
The challenge many teachers face is how to incorporate new technology into their classrooms that strengthens classroom learning by capitalizing on students’ media literacies. Blogs, a new and innovative technological tool, can be used in math and science classrooms to support student learning by capitalizing on students’ interests and familiarity with on‐line communication. This study explores the emerging blogging practices of one high school mathematics teacher and his class to explore issues of intent, use, and perceived value. Data sources for this case included one year's worth of blog content, an interview with the facilitating teacher, and students ‘perceptions of classroom blogging practices. Findings indicate that (1) teachers’ intentions focused on creating additional forms of participation as well as increasing student exposure time with content; (2) blogs were used in a wide variety of ways that likely afforded particular benefits; and (3) both teacher and students perceived the greater investment to be worthwhile. The findings are used to critically consider claims made in the literature about the potential of blogging to effectively support classroom learning.  相似文献   

4.
This paper presents an in‐depth cross‐case analysis of three high‐achieving young adolescent girls who had contrasting mathematics learning experiences during the first year of middle school. In particular, this study examines the foundation for their motivation, as well as the dominant mode of learning and academic engagement in relation to three sociocultural factors, family background, the role of peers, and the level of teachers' understanding of the students and instructional support provided. Our data analysis revealed that the three girls possessed motivation structures and learning dispositions that are more or less prone to conceptual or procedural understanding in mathematics. This resulted in a significant variation in the mode of their academic engagement with the subject, and this provided a different set of challenges in each girl's pursuit of higher level of mathematics learning.  相似文献   

5.
Despite widespread agreement that the activity of reasoning-and-proving should be central to all students' mathematical experiences, many students face serious difficulties with this activity. Mathematics textbooks can play an important role in students' opportunities to engage in reasoning-and-proving: research suggests that many decisions that teachers make about what tasks to implement in their classrooms and when and how to implement them are mediated by the textbooks they use. Yet, little is known about how reasoning-and-proving is promoted in school mathematics textbooks. In this article, I present an analytic/methodological approach for the examination of the opportunities designed in mathematics textbooks for students to engage in reasoning-and-proving. In addition, I exemplify the utility of the approach in an examination of a strategically selected American mathematics textbook series. I use the findings from this examination as a context to discuss issues of textbook design in the domain of reasoning-and-proving that pertain to any textbook series.  相似文献   

6.
This paper uses the example of six Japanese teachers and their mathematics lessons to illustrate how clear, high standards for mathematics instruction are combined with teachers' holistic concern for students. We draw upon data from the Third International Math and Science Study Case Study Project in Japan that was designed to elucidate the context behind the high achievement of Japanese students. Using everyday examples of classroom practice, we illustrate both flexibility in teachers' approach to teaching and adherence to Monbusho's (Ministry of Education, Science, Sports, and Culture)Course of Study. Our purpose is to emphasize how flexibility and attention to individual needs by Japanese teachers combine with quality mathematics instruction based on the detailed Japanese curricula. Six teachers' characteristics and lessons (two teachers at each educational level—elementary, junior high, and high school) are described in order to show the variety of teachers who exist in Japan. These teachers use their understanding of theCourse of Study and are supported by their school environment to enhance their students' conceptual understanding of the fundamentals of mathematics. Characteristics of their teaching include: 1) involving the whole class in learning. 2) using extremely focused curriculum guidelines that expect mastery of concepts at each grade level, 3) thoroughly covering mathematics units in an organized and in-depth manner, 4) leading classes as facilitators or guides more often than as lecturers, and 5) focusing on problem solving with the primary goal of developing students' ability to reason, especially to reason inductively. The examples in this paper show how these methods develop in individal classrooms.  相似文献   

7.
Although popular media often provides negative images of mathematicians, we contend that mathematics classroom practices can also contribute to students' images of mathematicians. In this study, we examined eight mathematics teachers' framings of mathematicians in their classrooms. Here, we analyze classroom observations to explore some of the characteristics of the teachers' framings of mathematicians in their classrooms. The findings suggest that there may be a relationship between a teachers' mathematics background and his/her references to mathematicians. We also argue that teachers need to be reflective about how they represent mathematicians to their students, and that preservice teachers should explore their beliefs about what mathematicians actually do.  相似文献   

8.
This case study reviewed the collaborative efforts of university engineers, teacher educators, and middle school teachers to advance sixth‐ and seventh‐grade students' learning through a series of project‐based engineering activities. This two‐year project enriched regular school curricula by introducing real‐world applications of science and mathematics concepts that expanded opportunities for creativity and problem‐solving, introduced problem‐based learning, and provided after‐school programming (for girls only) led by engineering students from the local university. This engineering education initiative showed significant impact on students' (1) confidence in science and mathematics; (2) effort toward science and mathematics; (3) awareness of engineering; and (4) interest in engineering as a potential career. With regard to gender, there were no significant differences between boys' and girls' responses. The girls' confidence in their own skills and potential, however, was significantly more positive than the boys' confidence in the girls. These results gave rise to new questions regarding mentor/mentee relationships and the overall effect of “girls only” mentoring.  相似文献   

9.
With ongoing underrepresentation of women in STEM fields, it is necessary to explore ways to maintain girls' STEM interest throughout elementary and middle school. This study is situated within the context of Designs in STEM (pseudonym), an out-of-school program that engages urban youth in authentic STEM experiences. Participants were 30 girls attending Designs in STEM in grades four and five. Participants were interviewed about their STEM interest, out-of-school versus in-school STEM learning experiences, and how gender relates to STEM success. Several key findings emerged. First, although students' prior school experiences with mathematics resulted in less positive dispositions toward mathematics than other STEM disciplines, their experiences at Designs in STEM revealed that mathematics could be fun and valuable when used for real-world purposes. Second, students found Designs in STEM to be more engaging and inspiring due to the context and pedagogies employed by Designs in STEM instructors. Third, despite observing girls' behavior that was more aligned with academic success, participants still identified STEM advantages for boys. Finally, participants defined success and intelligence in STEM based on speed and tracking. Discussion focuses on the need to consider how school-based mathematics instruction may serve as a barrier to girls' STEM interest and involvement.  相似文献   

10.
This contribution gives, an overview of the project “LeActiveMath”. Within this project a new mathematics learning software has been developed. LeActiveMath is an innovative eLearning system for high school and college or university level classrooms which can also be used in informal contexts for self-learning, since it is adaptive to the learner and his or her learning context in many respects. Topics cover elements of basic knowledge like ‘linear equations’ as well as more sophisticated contents like ‘differential calculus’. This article describes some of the innovative components of the software that are meant to support the students' self-regulated learning. We conclude by reporting on the first evaluations in math classorooms in fall 2005.  相似文献   

11.
In the transition to middle school, and during the middle school years, students' motivation for mathematics tends to decline from what it was during elementary school. Formative assessment strategies in mathematics can help support motivation by building confidence for challenging tasks. In this study, the authors developed and piloted a professional development program, Learning to Use Formative Assessment in Mathematics with the Assessment Work Sample Method (AWSM) to build middle school math teachers' understanding of the characteristics of high‐quality formative assessment processes and increases their ability to use them in their classrooms. AWSM proved to be feasible to implement in the middle school setting. It improved teachers' practice of formative assessment, especially in their feedback practices, regardless of their pedagogical content knowledge at entry. Results from focus groups suggested that teachers were better able to implement ungraded practice and student self‐ and peer‐assessment after AWSM, and that students were more willing to engage in complex problem solving.  相似文献   

12.
We explore the influence of family on adolescent students' mathematical habitus by investigating the association between students' perceptions of parental influence and their dispositions towards mathematics. A construct measuring ‘perceived parental influence’ was validated using Rasch methodology on data from 563 Cypriot students on ‘core’ and ‘advanced’ mathematics pre-university courses, and was then used to predict students' dispositions towards future study of mathematically-demanding courses at university. In most of the regression models, perceived parental influence was not associated significantly with students' dispositions towards mathematics, when other variables were included in the models. However, further statistical analysis showed that perceived parental influence is mediated by (i) the mathematics course students are studying and (ii) their mathematical inclination. We suggest that family influences on students' dispositions are significantly accounted for by students' prior choice of mathematics course and the family's inculcation of their mathematical inclination; these are important factors influencing university choices.  相似文献   

13.
Birgit Pepin 《ZDM》2011,43(4):535-546
Comparing English and Norwegian pupils’ attitude towards mathematics, in this article I develop a deeper understanding of the factors that may shape and influence ‘pupil attitude towards mathematics’, and argue for it as a socio-cultural construct embedded in and shaped by students’ environment and context in which they learn mathematics. The theoretical framework leans on work by Zan and Di Martino (The Montana Mathematics Enthusiast, Monograph 3, pp. 157–168, 2007) to elicit Norwegian and English pupils’ attitude of mathematics as they experience it in their respective environments. Whilst there were differences which could be seen to be accounted for by differently ‘figured’ environments, there are also many similarities. It was interesting to see that, albeit based on a small statistical sample, in both countries students had a positive attitude towards mathematics in year 7/8, which dropped in year 9, and increased again in years 10/11. This result could be explained and compared with other larger scale studies (e.g. Hodgen et al. in Proceedings of the British Society for Research into Learning Mathematics. 29(3), 2009). The analysis of pupils’ qualitative comments (and classroom observations) suggested seven factors that appeared to influence pupil attitude most, and these had ‘superficial’ commonalities, but the perceptions that appeared to underpin these mentions were different, and could be linked to the environments of learning mathematics in their respective classrooms. In summary, it is claimed that it is not enough to identify the factors that may shape and influence pupil attitude, but more importantly, to study how these are ‘lived’ by pupils, what meanings are made in classrooms and in different contexts, and how the factors interrelate and can be understood.  相似文献   

14.
Mamokgethi Setati 《ZDM》2003,35(6):294-300
In this paper I consider what it means to ‘re’-present qualitative data from multilingual mathematics classrooms. I draw from a recent study that focused on language practices in multilingual mathematics classrooms to explore the different levels involved in the ‘re’-presentation of multilingual data. The purpose of the paper is not to discuss the details of the study but to use data from the study to raise the awareness of the conceptual underpinnings of data re-presentation in mathematics education research. I use the data to show one perspective to ‘re’-presentation of multilingual data. The main argument of the paper is that ‘re’-presentation of multilingual data is not just talk written down, it is inevitably a process of selection and is informed by theory, research questions, tools of analysis and the purposes of re-presenting the data.  相似文献   

15.
A survey on attitudes toward mathematics of third- and fifth-grade students enrolled in a large urban school district was conducted in the spring of 1994 as part of a review of the mathematics program. Student responses to survey items were analyzed with respect to gender and grade level. Although girls and boys were equally likely to indicate that they like mathematics, in both Grades 3 and 5, boys were more likely than girls to report being good at mathematics. This result has often been reported for older students but has rarely been explored in younger children. Some gender and grade differences were observed in students' attitudes towards the specific strands of mathematics. Both girls and boys in Grade 5 were more likely than students in Grade 3 to believe that mathematics was relevant to their lives. Virtually all children thought that both girls and boys needed to study mathematics. No gender or grade differences in students' beliefs regarding the process of learning mathematics were observed. The results support the need for further research to identify variables that influence the development of student perceptions and attitudes toward mathematics during elementary school.  相似文献   

16.
Mathematics education needs a better appreciation of the dominant power structures in the educational field: Bourdieu's theory of capital provides a good starting point. We argue from Bourdieu's perspective that school mathematics provides capital that is finely tuned to generationally reproduce the social structures that serve to keep the powerful in power, while ensuring that less powerful groups are led to accept their own failure in mathematics. Bourdieu's perspective thereby highlights theoretical inadequacies in much mathematics education research, insofar as it presumes a consensus about a ‘what works agenda’ for improving achievement for all. Drawing on one case where we manufactured awkward facts, we illustrate a Bourdieusian interpretation of mathematics capital as reproductive, and the crucial role of its cultural arbitrary. We then criticise the Bourdieusian concept of ‘mathematical capital’ as the value of mathematical competence in practice and propose to extend his tools to include the contradictory ‘use’ and ‘exchange’ values of mathematics instead: we will show how this conceptualisation goes ‘beyond Bourdieu’ and helps explain how teaching-learning might (ideally) produce ‘cultural use value’ in mathematical competence, while still recognising the contradictions teachers and learners face. Finally, we suggest how critical education research generally can benefit from this theoretical framework: (1) in exposing the interest of the dominant classes; but also (2) in researching critical pedagogic alternatives that challenge orthodoxy in educational policy and practice both in mathematics education and more generally.  相似文献   

17.
The aim of this study is to determine how the TIMSS mathematics success of the 8th grade students differentiates according to the school type, gender, mathematics report mark, parents' education level, cognitive domains and cognitive domains by gender. Relational survey method was used in the study. Six-hundred fifty two 8th grade students studying in the same city in Turkey participated in this study. In this study, a 45 question test that was made up by choosing TIMSS 2011 mathematics questionnaire was used as a data collection tool. Quantitative data analysis methods were used in the data analysis, frequency, percentage, average, standard deviation, independent sample test, one-way analysis of variance and post-hoc tests were applied to data by using SPSS packaged software. At the end of the study, it was determined that the school type, mathematics school mark, parents' education level and cognitive domains influenced the students' TIMSS mathematics success but their gender was a neutral element. Moreover, it was seen that schools which are really successful in national exams are more successful in TIMSS exam; students whose mathematics school marks are 5 and whose parents graduated from university are more successful in TIMSS exams than others.  相似文献   

18.
The purpose of this qualitative study was to investigate typical middle school general education mathematics teachers' beliefs and knowledge of students with learning disabilities and inclusive instruction and to gain an understanding of the process of inclusion as it is implemented in middle school classrooms. In‐depth interviews, surveys, and classroom observations were conducted with seven teachers. The constant comparative method was used to analyze all interview and observation data. The findings reveal that even teachers who believe that inclusion is being successfully implemented are unclear about their responsibilities towards included students and the learning characteristics and specific mathematics teaching approaches that would be effective. The general educators feel that they were grossly under‐prepared during preservice and inservice for the realities of inclusion teaching. The study provides insights that can be used to enhance preservice and inservice programs for teachers and underscores the necessity for building teamwork and collaboration among general and special education middle school teachers.  相似文献   

19.
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for ‘drop in’ lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.  相似文献   

20.
In the nineteenth century, Warren Colburn defended understanding as the avenue to learning arithmetic and questioned the memorization method in use since the seventeenth century. Colburn's work was appreciated by educators in the common school era, and his book is still considered an important one in the history of mathematics education. Many criticisms of Colburn's ideas, however, emerged during his time, and teaching for understanding never fully reached nineteenth century mathematics classrooms. This episode in the history ofmathematics education raises questions about the success of contemporary attempts to reform school mathematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号