首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the delay differential equation [(x)\dot](t) = - mx(t) + f(x(t - t))\dot x(t) = - \mu x(t) + f(x(t - \tau )), where μ, τ are positive parameters and f is a strictly monotone, nonlinear C 1-function satisfying f(0) = 0 and some convexity properties. It is well known that for prescribed oscillation frequencies (characterized by the values of a discrete Lyapunov functional) there exists τ* > 0 such that for every τ > τ* there is a unique periodic solution. The period function is the minimal period of the unique periodic solution as a function of τ > τ*. First we show that it is a monotone nondecreasing Lipschitz continuous function of τ with Lipschitz constant 2. As an application of our theorem we give a new proof of some recent results of Yi, Chen and Wu [14] about uniqueness and existence of periodic solutions of a system of delay differential equations.  相似文献   

2.
We study the problem of existence of periodic and almost periodic solutions of the scalar equation x′ (t) = − δx(t) + pmax u∈[th, t] x(u) + f(t) where δ, pR, with a periodic (almost periodic) perturbation f(t). For these solutions, we establish conditions of global exponential stability and prove uniqueness theorems. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 6, pp. 747–754, June, 1998.  相似文献   

3.
Summary Using the integral average method, we give some new oscillation criteria for the second order differential equation with damped term (a(t)Ψ(x(t))K(x'(t)))'+p(t)K(x'(t))+q(t)f(x(t))=0, t<span style='font-size:10.0pt; font-family:"Lucida Sans Unicode"'>≧t0. These results improve and generalize the oscillation criteria in<span lang=EN-US style='font-size:10.0pt;mso-ansi-language:EN-US'>[1], because they eliminate both the differentiability of p(t) and the sign of p(t), q(t). As a consequence, improvements of Sobol's type oscillation criteria are obtained.  相似文献   

4.
This paper gives conditions ensuring the existence for an initial value (x 0,v 0) of a solution to the second order differential inclusionx″(t) ∈F[x(t),x′(t)],x(0)=x 0,x′(0)=v 0 such thatx(t)K for allt whereK is a nonempty given subset ofR n .   相似文献   

5.
We consider the pure initial value problem for the system of equations νt = νxx + ?(ν) ? w, wt= ε(ν ? γw), ε, γ ? 0, the initial data being (ν(x, 0), w(x, 0)) = (?(x), 0). Here ?(v) = ?v + H(v ? a), where H is the Heaviside step function and a ? (0, 12). This system is of the FitzHugh-Nagumo type and has several applications including nerve conduction and distributed chemical/ biochemical systems. It is demonstrated that this system exhibits a threshold phenomenon. This is done by considering the curve s(t) defined by s(t) = sup{x: v(x, t) = a}. The initial datum, ?(x), is said to be superthreshold if limt→∞ s(t) = ∞. It is proven that the initial datum is superthreshold if ?(x) > a on a sufficiently long interval, ?(x) is sufficiently smooth, and ?(x) decays sufficiently fast to zero as ¦x¦ → ∞.  相似文献   

6.
In this paper, we consider the existence and multiplicity of positive periodic solutions for first-order vector differential equation x(t)+f(t,x(t))=0, a.e. t∈[0,ω] under the periodic boundary value condition x(0)=x(ω). Here ω is a positive constant, and is a Carathéodory function. Some existence and multiplicity results of positive periodic solutions are derived by using a fixed point theorem in cones.  相似文献   

7.
In this paper we deal with ordinary differential equations of the form dy/dx = P(x, y) where P(x, y) is a real polynomial in the variables x and y, of degree n in the variable y. If y = φ(x) is a solution of this equation defined for x ∈ [0, 1] and which satisfies φ(0) = φ(1), we say that it is a periodic orbit. A limit cycle is an isolated periodic orbit in the set of all periodic orbits. If φ(x) is a polynomial, then φ(x) is called a polynomial solution.  相似文献   

8.
This paper is concerned with the construction of accurate continuous numerical solutions for partial self-adjoint differential systems of the type (P(t) ut)t = Q(t)uxx, u(0, t) = u(d, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ xd, t >- 0, where P(t), Q(t) are positive definite oRr×r-valued functions such that P′(t) and Q′(t) are simultaneously semidefinite (positive or negative) for all t ≥ 0. First, an exact theoretical series solution of the problem is obtained using a separation of variables technique. After appropriate truncation strategy and the numerical solution of certain matrix differential initial value problems the following question is addressed. Given T > 0 and an admissible error ϵ > 0 how to construct a continuous numerical solution whose error with respect to the exact series solution is smaller than ϵ, uniformly in D(T) = {(x, t); 0 ≤ xd, 0 ≤ tT}. Uniqueness of solutions is also studied.  相似文献   

9.
We obtain sufficient conditions for the oscillation of all solutions of the higher order neutral differential equation dn/dm[y(t) + P(t) y(t - μ)] + Q(t) y(t ?σ) = 0, tt0 where n ≧ 1, P ? C[t0, ∞), R ], Q ? C[t0, ∞), R ] and τ, μ ? R +. Our results extend and improve several known results in the literature.  相似文献   

10.
Let E be a separable Banach space ordered by a reproducing cone with empty interior. We prove the existence of operator functions A : [0, ) P (P the cone of monotone increasing linear operators) and of initial values x0 such that the solution of x (t) = A(t) x(t), x(0) = x0, is dense in E.Received: 27 February 2004  相似文献   

11.
In this paper, the boundedness of all solutions of the nonlinear differential equation (φp(x′))′ + αφp(x+) – βφp(x) + f(x) = e(t) is studied, where φp(u) = |u|p–2 u, p ≥ 2, α, β are positive constants such that = 2w–1 with w ∈ ?+\?, f is a bounded C5 function, e(t) ∈ C6 is 2πp‐periodic, x+ = max{x, 0}, x = max{–x, 0}. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. [(x)\dot] = f (x) + eg (x, t) + e2[^(g)] (x, t, e){\dot{x} = f (x) + \varepsilon g (x, t) + \varepsilon^{2}\widehat{g} (x, t, \varepsilon)} , where x ? W ì \mathbbRn{x \in \Omega \subset \mathbb{R}^n} , g,[^(g)]{g,\widehat{g}} are T periodic functions of t and there is a 0 ∈ Ω such that f ( a 0) = 0 and f ′( a 0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits.  相似文献   

13.
We use a technique associated with measures of noncompactness to prove the existence of nondecreasing solutions to an integral equation with linear modification of the argument in the space C[0, 1]. In the last thirty years there has been a great deal of work in the field of differential equations with a modified argument. A special class is represented by the differential equation with affine modification of the argument which can be delay differential equations or differential equations with linear modifications of the argument. In this case we study the following integral equation x(t) = a(t) + (Tx)(t) ∫0^σ(t) u(t, s, x(s), x(λs))ds 0 〈 λ 〈 1 which can be considered in connection with the following Cauchy problem x'(t) = u(t, s, x(t), x(λt)), t ∈ [0, 1], 0 〈 λ 〈 1 x(0) = u0.  相似文献   

14.
We study a periodic boundary-value problem for the quasilinear equation u tt u xx =F[u, u t , u x ], u(x, 0)=u(x, π)=0, u(x + ω, t) = u(x, t), x ∈ ℝ t ∈ [0, π], and establish conditions that guarantee the validity of a theorem on unique solvability. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 9, pp. 1293–1296, September, 1998.  相似文献   

15.
This article presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x,t)) in the quasi‐linear parabolic equation ut(x,t)=(k(u(x,t))ux(x,t))x, with Dirichlet boundary conditions u(0,t)=ψ0, u(1,t)=ψ1. The main purpose of this paper is to investigate the distinguishability of the input–output mappings Φ[?]:?? →C1[0,T], Ψ[?]:??→C1[0,T] via semigroup theory. In this paper, it is shown that if the null space of the semigroup T(t) consists of only zero function, then the input–output mappings Φ[?] and Ψ[?] have the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of these mappings. Moreover, under the light of measured output data (boundary observations) f(t):=k(u(0,t))ux(0,t) or/and h(t):=k(u(1,t))ux(1,t), the values k0) and k1) of the unknown diffusion coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, can be determined explicitly. In addition to these, the values ku0) and ku1) of the unknown coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, are also determined via the input data. Furthermore, it is shown that measured output data f(t) and h(t) can be determined analytically by an integral representation. Hence the input–output mappings Φ[?]:??→ C1[0,T], Ψ[?]:??→C1[0,T] are given explicitly in terms of the semigroup. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We study the differential equation x"+g(x¢)+m(x) sgn x¢+f(x)=j(t)x''+g(x')+\mu(x)\,{\rm sgn}\, x'+f(x)=\varphi(t) with T-periodic right-hand side, which models e.g. a mechanical system with one degree of freedom subjected to dry friction and periodic external force. If, in particular, the damping term g is present and acts, up to a bounded difference, like a linear damping, we get existence of a T-periodic solution.¶In the more difficult case g = 0, we concentrate on the model equation x"+m(x) sgn x¢+x=j(t)x''+\mu(x)\,{\rm sgn}\,x'+x=\varphi(t) and obtain sufficient conditions for the existence of a T-periodic solution by application of Brouwer's fixed point theorem. For this purpose we show that a certain associated autonomous differential equation admits a periodic orbit such that the surrounded set (minus some neighborhood of the equilibria) is forward invariant for the equation above. Under additional assumptions on 7 we prove boundedness of all solutions.¶Finally, we provide a principle of linearized stability for periodic solutions without deadzones, where the "linearized" differential equation is an impulsive Hill equation.  相似文献   

17.
The following first order nonlinear differential equation with a deviating argument $ x'(t) + p(t)[x(\tau (t))]^\alpha = 0 $ is considered, where α > 0, α ≠ 1, pC[t 0; ∞), p(t) > 0 for tt 0, τC[t 0; ∞), lim t→∞ τ(t) = ∞, τ(t) < t for tt 0. Every eventually positive solution x(t) satisfying lim t→∞ x(t) ≧ 0. The structure of solutions x(t) satisfying lim t→∞ x(t) > 0 is well known. In this paper we study the existence, nonexistence and asymptotic behavior of eventually positive solutions x(t) satisfying lim t→∞ x(t) = 0.  相似文献   

18.
We are concerned in this paper with the existence of mild solutions to the Cauchy Problem for the fractional differential equation with nonlocal conditions: D q x(t)=Ax(t)+t n f(t,x(t),Bx(t)), t∈[0,T], n∈ℤ+, x(0)+g(x)=x 0, where 0<q<1, A is the infinitesimal generator of a C 0-semigroup of bounded linear operators on a Banach space X.  相似文献   

19.
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T ‐periodic solutions for a class of nonlinear n ‐th order differential equations with delays of the form x(n)(t) + f (x(n‐ 1)(t)) + g (t, x (tτ (t))) = p (t).  相似文献   

20.
We consider a linear differential system ε σ Φ (t,ε)Y′ =A(t, ε)Y, with ε a small parameter and Φ(t, ε) a function which may vanish in the domain of definition. Under some conditions imposed on the eigenvalues of the matrixA(t, ε), there exists an invertible matrixH(t, ε) which is continuous on ([0,a] × [0, ε0]). The transformationY=H(t, ε)Z takes then dimensional linear system into two differential systems of orderk andn?k respectively, withk. Thus the investigaton ofn dimensional systems encountered in singular perturbation as well as in stability theory is considerably simplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号