共查询到20条相似文献,搜索用时 0 毫秒
1.
Birgit Pepin 《ZDM》2011,43(4):535-546
Comparing English and Norwegian pupils’ attitude towards mathematics, in this article I develop a deeper understanding of the factors that may shape and influence ‘pupil attitude towards mathematics’, and argue for it as a socio-cultural construct embedded in and shaped by students’ environment and context in which they learn mathematics. The theoretical framework leans on work by Zan and Di Martino (The Montana Mathematics Enthusiast, Monograph 3, pp. 157–168, 2007) to elicit Norwegian and English pupils’ attitude of mathematics as they experience it in their respective environments. Whilst there were differences which could be seen to be accounted for by differently ‘figured’ environments, there are also many similarities. It was interesting to see that, albeit based on a small statistical sample, in both countries students had a positive attitude towards mathematics in year 7/8, which dropped in year 9, and increased again in years 10/11. This result could be explained and compared with other larger scale studies (e.g. Hodgen et al. in Proceedings of the British Society for Research into Learning Mathematics. 29(3), 2009). The analysis of pupils’ qualitative comments (and classroom observations) suggested seven factors that appeared to influence pupil attitude most, and these had ‘superficial’ commonalities, but the perceptions that appeared to underpin these mentions were different, and could be linked to the environments of learning mathematics in their respective classrooms. In summary, it is claimed that it is not enough to identify the factors that may shape and influence pupil attitude, but more importantly, to study how these are ‘lived’ by pupils, what meanings are made in classrooms and in different contexts, and how the factors interrelate and can be understood. 相似文献
2.
Sara Murray 《Research in Mathematics Education》2013,15(3):269-285
We analysed multivariable calculus students' meanings for domain and range and their generalisation of that meaning as they reasoned about the domain and range of multivariable functions. We found that students' thinking about domain and range fell into three broad categories: input/output, independence/dependence, and/or as attached to specific variables. We used Ellis' actor-oriented generalisations framework to characterise how students generalised their meanings for domain and range from single-variable to multivariable functions. This framework focuses on the process of generalisation – what students see as similar between ideas in multiple contexts. We found that students generalised their meanings for domain and range by relating objects, extending their meanings, using general principles and rules, and using/modifying previous ideas. Our findings suggest that the domain and range of multivariable functions is a topic instructors should explicitly address. 相似文献
3.
ABSTRACTThis study shows that using authentic contexts for learning differential equations in a differentiation-by-interest setting can enhance students’ beliefs about the relevance of mathematics. The students in this study were studying advanced mathematics (wiskunde D) at upper secondary school in the Netherlands. These students are often not aware of the relevance of the mathematics they have to learn in school. More insights into the application of mathematics in other sciences can be beneficial for these students in terms of preparation for their future study and career. A course differentiating by student interest with new context-rich curriculum materials was developed in order to enhance students’ beliefs about the relevance of mathematics. The intervention aimed at teaching differential equations through guided small-group tasks in scientific, medical or economical contexts. The results show that students’ beliefs about the relevance of mathematics improved, and they appreciated experiencing how the mathematics was applied in real-life situations. 相似文献
4.
Gerhard Sonnert Philip M. Sadler Samuel M. Sadler David M. Bressoud 《International Journal of Mathematical Education in Science & Technology》2013,44(3):370-387
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students’ attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students’ attitudes toward mathematics during a ‘mainstream’ calculus course while controlling for student backgrounds. The attitude measure combines students’ self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted ‘good teaching’ practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational ‘technology’ (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students’ attitudes towards mathematics. (3) ‘Ambitious teaching’ (e.g. group work, word problems, ‘flipped’ reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional ‘good teaching’ practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do not appear to have a reliable, positive impact on student attitudes toward mathematics. 相似文献
5.
Ruhama Even 《ZDM》2011,43(6-7):941-950
This study investigates the different ways by which secondary school mathematics teachers view how advanced mathematics studies are relevant to expertise in classroom instruction. Data sources for this study included position papers and written notes from a group interview of 15 Israeli teachers who studied in a special master’s program, of which advanced mathematics courses comprise a sizeable share. Data analysis was iterative and comparative, aiming at identifying and characterizing teachers’ different perspectives. Overall, all participating teachers thought that the advanced mathematics studies in the program were relevant to their teaching of secondary school mathematics. Moreover, teachers specifically mentioned the importance of studying contemporary mathematics from research mathematicians. All teachers pointed out at least one specific feature that they viewed as relevant to their work: advanced mathematics courses (1) as a resource for teaching secondary school mathematics, (2) for improving understanding about what mathematics is, and (3) for reminding teachers what learning mathematics feels like. 相似文献
6.
In English-speaking, Western countries, mathematics has traditionally been viewed as a “male domain”, a discipline more suited to males than to females. Recent data from Australian and American students who had been administered two instruments [Leder & Forgasz, in Two new instruments to probe attitudes about gender and mathematics. ERIC, Resources in Education (RIE), ERIC document number: ED463312, 2002] tapping their beliefs about the gendering of mathematics appeared to challenge this traditional, gender-stereotyped view of the discipline. The two instruments were translated into Hebrew and Arabic and administered to large samples of grade 9 students attending Jewish and Arab schools in northern Israel. The aims of this study were to determine if the views of these two culturally different groups of students differed and whether within group gender differences were apparent. The quantitative data alone could not provide explanations for any differences found. However, in conjunction with other sociological data on the differences between the two groups in Israeli society more generally, possible explanations for any differences found were explored. The findings for the Jewish Israeli students were generally consistent with prevailing Western gendered views on mathematics; the Arab Israeli students held different views that appeared to parallel cultural beliefs and the realities of life for this cultural group. 相似文献
7.
8.
9.
Publicly-available datasets, though useful for education, are often constructed for purposes that are quite different from students’ own. To investigate and model phenomena, then, students must learn how to repurpose the data. This paper reports on an emerging line of research that builds on work in data modeling, exploratory data analysis, and storytelling to examine and support students’ data repurposing. We ask: What opportunities emerge for students to reason about the relationship between data, context, and uncertainty when they repurpose public data to explore questions about their local communities? And, How can these opportunities be supported in classroom instruction and activity design? In two exploratory studies, students were asked to pose questions about their communities, use publicly-available data to investigate those questions, and create visual displays and written stories about their findings. Across both enactments, opportunities for reasoning emerged especially when students worked to reconcile (1) their own knowledge and experiences of the context from which data were collected with details of the data provided; and (2) their different emerging stories about the data with one another. We review how these opportunities unfolded within each enactment at the level of group and classroom, with attention to facilitator support. 相似文献
10.
Nicholas G. Mousoulides 《ZDM》2013,45(6):863-874
This study examined teachers’ and parents’ beliefs on the implementation of inquiry-based modeling activities as a means to facilitate parental engagement in school mathematics and science. The study had three objectives: (a) to describe teachers’ beliefs about inquiry-based mathematics and science and parental engagement; (b) to describe parents’ beliefs about inquiry-based mathematics and science and their engagement in inquiry-based problem solving; and (c) to explore the impact of an inquiry-based learning environment comprising a model-eliciting activity and Twitter. The research involved three sixth-grade teachers and 32 parents from one elementary school. Teachers and parents participated in workshops, followed by the implementation of a model-eliciting activity in two classrooms. Three teachers and six parents participated in semi-structured interviews. Teachers reported positive beliefs on parental engagement in the mathematics and science classrooms and the potential positive role of parents in implementing innovative problem-solving activities. Parents expressed strong beliefs on their engagement and welcomed the inquiry-based modeling approach. Based on the results of this aspect of a four-year longitudinal design, implications for parental engagement in inquiry-based mathematics and science teaching and learning and further research are discussed. 相似文献
11.
Ali Bicer Robert M. Capraro Mary M. Capraro 《International Journal of Mathematical Education in Science & Technology》2018,49(5):705-720
The purpose of this paper is to demonstrate Hispanic students’ mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students’ mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies and 14 of which were matched non-STEM schools, were included in this study. A hierarchical linear modelling method was conducted. The result of the present study revealed that there was no difference in Hispanic students’ mathematics achievement growth rate in T-STEM academies compared to Hispanic students’ mathematics achievement growth rate in comparison schools. However, in terms of gender, the results indicated that female Hispanic students in T-STEM academies outperformed female Hispanic students in comparison schools in their mathematics growth rate. 相似文献
12.
Pessia Tsamir Dina Tirosh Tommy Dreyfus Ruthi Barkai Michal Tabach 《The Journal of Mathematical Behavior》2009,28(1):58-67
Calls for reform in mathematics education around the world state that proofs should be part of school mathematics at all levels. Turning these calls into a reality falls on teachers’ shoulders. This paper focuses on one secondary school teacher's reactions to students’ suggested proofs and justifications in elementary number theory. To determine whether the justifications are acceptable, the teacher used not only her SMK regarding mathematical aspects, but also her PCK about what a student giving this justification might know or not know. A discussion of the findings is followed by some questions that arise. 相似文献
13.
Tracy E. Dobie 《Mathematical Thinking and Learning》2019,21(1):28-53
This research explores how adolescents conceptualize the usefulness of mathematics. Integrating sociocultural theory with the study of utility value, this study uses open-ended survey items and interview tasks to examine conceptions of usefulness among a group of predominantly Latinx middle school students. Findings reveal that students primarily conceptualized the usefulness of mathematics in two ways. First, students considered the applicability of mathematics content, focusing on applications of mathematics in everyday life and future jobs/careers. Second, students considered the usefulness of features of the learning experience, such as the form of interaction and structure of the activity. Both conceptions are compared to existing conceptions of usefulness in the literature, and implications for classroom practice and future research are discussed. 相似文献
14.
This study examined how two selected expert teachers improved their expertise in mathematics instruction through participating in the development of exemplary lessons throughout the years. The main data for this study included the lesson designs at two crucial stages (with relevant video-taped lessons), teachers?? reflection reports, written surveys, and a phone interview. These two case studies showed that the teachers continuously developed their proficiency in the following four aspects: obtaining a better understanding of content knowledge; becoming more skillful in addressing difficult content points; having a more purposeful organization of problem sequences; and developing more comprehensive and feasible instructional objectives. Both teachers appreciated the learning experience from outside experts?? critical feedback, collaborative teaching experiments, self-reflection on teaching, and helping other teachers. They also realized a tension between exemplary lesson development and the reality of examination-driven teaching. 相似文献
15.
Oguz Koklu 《International Journal of Mathematical Education in Science & Technology》2013,44(8):999-1011
Pre-existing misconceptions are serious impediments to learning in mathematics. Means for detecting and correcting them have received much attention in the literature of educational research. Dynamic geometry software has been tried at different grade levels. This quasi-experimental study investigates the effect of Cabri-assisted instruction on tenth graders’ misconceptions about graphs of quadratic functions. The results indicate that Cabri-assisted instruction did not have a statistically significant effect on their misconceptions, but the misconception scores of the experimental group were better than those of the control group. Also, there was a significant difference between the achievement scores of the two groups. Scores of the experimental group on a quadratic functions test were significantly higher than those of the control group. In conclusion, some implications and limitations of the study are discussed. 相似文献
16.
Allan Graham Duncan 《ZDM》2010,42(7):763-774
Do teachers find that the use of dynamically linked multiple representations enhances their students’ relational understanding of the mathematics involved in their lessons and what evidence do they provide to support their findings? Throughout session 2008–2009, this empirical research project involved six Scottish secondary schools, two mathematics teachers from each school and students from different ages and stages. Teachers used TI-Nspire PC software and students the TI-Nspire handheld technology. This technology is specifically designed to allow dynamically linked multiple representations of mathematical concepts such that pupils can observe links between cause and effect in different representations such as dynamic geometry, graphs, lists and spreadsheets. The teachers were convinced that the use of multiple representations of mathematical concepts enhanced their students’ relational understanding of these concepts, provided evidence to support their argument and described changes in their classroom pedagogy. 相似文献
17.
Ryan C. Smith Dongjo Shin Somin Kim 《International Journal of Mathematical Education in Science & Technology》2017,48(5):659-681
As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study examines the criteria prospective and current secondary mathematics teachers use and value most when evaluating mathematical cognitive technologies (MCTs). Results indicate all groups of participants developed criteria focused on how well an MCT represents the mathematics, student interaction and engagement with the MCT, and whether the MCT was user-friendly. However, none of their criteria focused on how well an MCT would reflect students’ solution strategies or illuminate their thinking. In addition, there were some differences between the criteria created by participants with and without teaching experience, specifically the types of supports available in an MCT. Implications for mathematics teacher educators are discussed. 相似文献
18.
Ciara Lane Martin Stynes John O'Donoghue 《International Journal of Mathematical Education in Science & Technology》2016,47(7):1009-1027
A questionnaire survey was carried out as part of a PhD research study to investigate the image of mathematics held by post-primary students in Ireland. The study focused on students in fifth year of post-primary education studying ordinary level mathematics for the Irish Leaving Certificate examination – the final examination for students in second-level or post-primary education. At the time this study was conducted, ordinary level mathematics students constituted approximately 72% of Leaving Certificate students. Students were aged between 15 and 18 years. A definition for ‘image of mathematics’ was adapted from Lim and Wilson, with image of mathematics hypothesized as comprising attitudes, beliefs, self-concept, motivation, emotions and past experiences of mathematics. A questionnaire was composed incorporating 84 fixed-response items chosen from eight pre-established scales by Aiken, Fennema and Sherman, Gourgey and Schoenfeld. This paper focuses on the findings from the questionnaire survey. Students’ images of mathematics are compared with regard to gender, type of post-primary school attended and prior mathematical achievement. 相似文献
19.
Sian Hoon Teoh Ah Choo Koo Parmjit Singh 《International Journal of Mathematical Education in Science & Technology》2013,44(6):711-724
The purpose of this article is to identify factors that statistically explain the variation and the measures on the level of motivation of a sample of mathematics students in a university. Specifically, this analysis will identify groups of similar items and reduce the number of variables used in a study. This article explains the use of exploratory factor analysis in extracting factors of personal belief and motivational factors among students in learning mathematics. The adaptation of these factors can be used for assessing academic performance in relation to motivation level. By identifying these factors, the mathematics educators or researchers will be able to find ways to improve the condition of the factors and also to further investigate the factors based on confirmatory approaches. 相似文献
20.
Sergiy Klymchuk 《International Journal of Mathematical Education in Science & Technology》2017,48(7):1106-1119
The article reports on the results of two case studies on the impact of the regular use of puzzles as a pedagogical strategy in the teaching and learning of engineering mathematics. The intention of using puzzles is to engage students’ emotions, creativity and curiosity and also to enhance their generic thinking skills and lateral thinking ‘outside the box’. Students’ attitudes towards this pedagogical strategy are evaluated via short questionnaires with two groups of university students taking a second-year engineering mathematics course. Students’ responses to the questionnaire are presented and analyzed in the paper. 相似文献