首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Empirical research shows that students often use reasoning founded on copying algorithms or recalling facts (imitative reasoning) when solving mathematical tasks. Research also indicate that a focus on this type of reasoning might weaken the students’ understanding of the underlying mathematical concepts. It is therefore important to study the types of reasoning students have to perform in order to solve exam tasks and pass exams. The purpose of this study is to examine what types of reasoning students taking introductory calculus courses are required to perform. Tasks from 16 exams produced at four different Swedish universities were analyzed and sorted into task classes. The analysis resulted in several examples of tasks demanding different types of mathematical reasoning. The results also show that about 70% of the tasks were solvable by imitative reasoning and that 15 of the exams could be passed using only imitative reasoning.  相似文献   

2.
It is advocated that introductory calculus texts should present topics in a manner that is understandable to students without necessarily sacrificing rigour. Illustrative examples are given of a conversational approach to problem solving.  相似文献   

3.
The aim of this article is to present and discuss some results from an inquiry into mathematics textbooks authors’ visions about their texts and approaches they choose when new concepts are introduced. Authors’ responses are discussed in relation to results about students’ difficulties with approaching calculus reported by previous research. A questionnaire has been designed and sent to seven authors of the most used calculus textbooks in Norway and four authors have responded. The responses show that the authors mainly view teaching in terms of transmission so they focus mainly on getting the mathematical content correct and ‘clear’. The dominant view is that the textbook is intended to help the students to learn by explaining and clarifying. The authors prefer the approach to introduce new concepts based on the traditional way of perceiving mathematics as a system of definitions, examples and exercises. The results of this study may enhance our understanding of the role of the textbook at tertiary level. They may also form a foundation for further research.  相似文献   

4.
Access to advanced study in mathematics, in general, and to calculus, in particular, depends in part on the conceptual architecture of these knowledge domains. In this paper, we outline an alternative conceptual architecture for elementary calculus. Our general strategy is to separate basic concepts from the particular advanced techniques used in their definition and exposition. We develop the beginning concepts of differential and integral calculus using only concepts and skills found in secondary algebra and geometry. It is our underlining objective to strengthen students' knowledge of these topics in an effort to prepare them for advanced mathematics study. The purpose of this reconstruction is not to alter the teaching of limit-based calculus but rather to affect students' learning and understanding of mathematics in general by introducing key concepts during secondary mathematics courses. This approach holds the promise of strengthening more students' understanding of limit-based calculus and enhancing their potential for success in post-secondary mathematics.  相似文献   

5.
This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly reconstruct the knowledge, given a few hints, this is just as good as retention. The study was conducted using a mixed method approach investigating students’ knowledge in three worlds of mathematics. The results showed that the student had a very low retention of concepts, even after hints. However, after completing the calculus course, the student had successfully used calculus in a physical chemistry study programme. Hence, using calculus in new contexts does not in itself strengthen the original calculus learnt; they appeared as disjoint bodies of knowledge.  相似文献   

6.
A research method consisting of written tests and individual interviews was introduced to examine first-year university students' understanding of fundamental calculus concepts. Six hundred and thirty students from three South African universities were subjected to the tests pertaining to this study. Several misconceptions underlying students' understanding of calculus concepts were identified. This paper deals mainly with some of the common errors and misconceptions relating to students' understanding of ‘limit of a function’ and ‘continuity of a function at a point’.  相似文献   

7.
This article presents the views of 24 nationally recognized authorities in the field of mathematics, and in particular the calculus, on student understanding of the first-year calculus. A framework emerged that includes four overarching end goals for understanding of the first-year calculus: (a) mastery of the fundamental concepts and-or skills of the first-year calculus, (b) construction of connections and relationships between and among concepts and skills, (c) the ability to use the ideas of the first-year calculus, and (d) a deep sense of the context and purpose of the calculus. Each end goal for student understanding is explored in detail and the potential for using the framework as an organizational tool is discussed.  相似文献   

8.
In this introductory paper we take partial stock of the current state of field on calculus research, exemplifying both the promise of research advances as well as the limitations. We identify four trends in the calculus research literature, starting with identifying misconceptions to investigations of the processes by which students learn particular concepts, evolving into classroom studies, and, more recently research on teacher knowledge, beliefs, and practices. These trends are related to a model for the cycle of research and development aimed at improving learning and teaching. We then make use of these four trends and the model for the cycle of research and development to highlight the contributions of the papers in this issue. We conclude with some reflections on the gaps in literature and what new areas of calculus research are needed.  相似文献   

9.
Novice students have difficulty with the topic of limits in calculus. We believe this is in part because of the multiple perspectives and shifting metaphors available to solve items correctly. We investigated college calculus instructors' personal concepts of limits. Based upon previous research investigating introductory calculus student metaphorical reasoning, we examined 11 college instructors' metaphorical reasoning on limit concepts. This paper focused on previous research of metaphor clusters observed among students to answer the following: (a) Do college instructors use metaphorical reasoning to conceptualize the meaning of a limit? (b) Can we characterize instructor metaphorical reasoning similar to those observed among students? (c) Will an instructor's self‐identification of metaphor clusters be consistent with our metaphor coding? We found that college instructors' perspectives vary, either graphical or algebraic, in their explanations of limit items. All the instructors used metaphors, and instructor metaphorical reasoning aligned with student metaphor clusters. Instructors tended to change their metaphors with respect to the limit item. Instructors were not aware of their use of metaphors, nor were they aware of their inconsistency in their choice of metaphor. We believe that instructor awareness of their own distinct perspectives and metaphors would assist students' understanding of limit concepts.  相似文献   

10.
11.
High failure rates in introductory college mathematics courses, particularly among underrepresented groups of students, have been of concern for many years. One approach to the problem experiencing some success has been Treisman's Emerging Scholars workshop model. The model involves supplemental workshops in which students solve problems in collaborative learning groups. This study reports on the effectiveness of Math Excel, an implementation of the Treisman model for introductory mathematics courses (college algebra, precalculus, differential calculus, and integral calculus) at Oregon State University over five academic terms. Regression analyses revealed a significant effect on achievement (.671 grade points on a 4‐point scale) favoring Math Excel students. Even after adjusting for prior mathematics achievement using linear regression with SAT‐M as predictor, Math Excel groups' grade averages were over half a grade point better than predicted (significant at the .001 level). This study provides supporting evidence that programs like Math Excel can help students in making a successful transition to college mathematics study.  相似文献   

12.
It is recognized that there is a mathematics problem in chemistry, whereby, for example, undergraduate students appear to be unable to utilize basic calculus knowledge in a chemistry context – calculus knowledge – which would have been taught to these students in a mathematics context. However, there appears to be a scarcity of literature addressing the possible reasons for this problem. This dearth of literature has spurred the following two questions: (1) Can students transfer mathematical knowledge to chemistry?; and (2) What are the possible factors associated with students being able to successfully transfer mathematical knowledge to a chemistry context? These questions were investigated in relation to the basic mathematical knowledge which chemistry students need for chemical kinetics and thermodynamics, using the traditional view of the transfer of learning. Two studies were undertaken amongst two samples of undergraduate students attending Dublin City University. Findings suggest that the mathematical difficulties which students encounter in a chemistry context may not be because of an inability to transfer the knowledge, but may instead be due to insufficient mathematical understanding and/or knowledge of mathematical concepts relevant to chemical kinetics and thermodynamics.  相似文献   

13.
14.
Researchers are currently investigating how calculus students understand the basic concepts of first-year calculus, including the integral. However, much is still unknown regarding the cognitive resources (i.e., stable cognitive units that can be accessed by an individual) that students hold and draw on when thinking about the integral. This paper presents cognitive resources of the integral that a sample of experienced calculus students drew on while working on pure mathematics and applied physics problems. This research provides evidence that students hold a variety of productive cognitive resources that can be employed in problem solving, though some of the resources prove more productive than others, depending on the context. In particular, conceptualizations of the integral as an addition over many pieces seem especially useful in multivariate and physics contexts.  相似文献   

15.
Andrea Hoffkamp 《ZDM》2011,43(3):359-372
Calculus and functional thinking are closely related. Functional thinking includes thinking in variations and functional dependencies with a strong emphasis on the aspect of change. Calculus is a climax within school mathematics and the education to functional thinking can be seen as propaedeutics to it. Many authors describe that functions at school are mainly treated in a static way, by regarding them as pointwise relations. This often leads to the underrepresentation of the aspect of change at school. Moreover, calculus at school is mainly procedure-oriented and structural understanding is lacking. In this work, two specially designed interactive activities for the teaching and learning of concepts of calculus based on dynamic geometry software are presented. They accentuate the aspect of change and the object aspect of functions using a double stage visualization. Moreover, the activities allow the discovery and exploration of some concepts of calculus in a qualitative-structural way without knowing or using curve-sketching routines. The activities were used in a qualitative study with 10th grade students of age 15–16 in secondary schools in Berlin, Germany. Some pairs of students were videotaped while working with the activities. After transcribing, the interactions of the students were interpreted and analyzed focusing to the use of the computer. The results show how the students mobilize their knowledge about functions working on the given tasks, and using the activities to formulate important concepts of calculus in a qualitative way. Also, some important epistemological obstacles can be detected.  相似文献   

16.
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students’ attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students’ attitudes toward mathematics during a ‘mainstream’ calculus course while controlling for student backgrounds. The attitude measure combines students’ self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted ‘good teaching’ practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational ‘technology’ (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students’ attitudes towards mathematics. (3) ‘Ambitious teaching’ (e.g. group work, word problems, ‘flipped’ reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional ‘good teaching’ practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do not appear to have a reliable, positive impact on student attitudes toward mathematics.  相似文献   

17.
Using only fairly simple and elementary considerations–essentially from first year undergraduate mathematics–we show how the classical Stokes' theorem for any given surface and vector field in ?3 follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the given surface. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version of Stokes' theorem for differential forms on manifolds. However, the main point in the present article is first, that this latter fact usually does not get within reach for students in first year calculus courses and second, that calculus textbooks in general only just hint at the correspondence alluded to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well-known and often used exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of this article uses only integration in 1, 2 and 3 variables together with a ‘fattening’ technique for surfaces and the inverse function theorem.  相似文献   

18.
The purpose of the study is to examine whether there is a significant relationship between students’ motivation to succeed in introductory mathematics courses offered by universities in the United Arab Emirates (UAE) as the dependent variable of the research and another five independent variables including cognitive mathematics self-concept, affective mathematics self-concept, extrinsic motivation as expectations of future career and income, students’ age and the number of mathematics courses taken by students. The rationale of the study is based on the significance of mathematics achievements for students and academic institutions in particular, as well as for the society in general. The study is designed based on a quantitative research methodology and a sample of 685 students participated in completing a survey questionnaire. The sample is drawn from students who were registered in different introductory mathematics courses at four academic institutions of higher education in the UAE. The quantitative correlation analysis among students’ motivation, cognitive mathematics self-concept, affective mathematics self-concept, extrinsic motivation, students’ age and the number of mathematics courses taken by students reveals theoretically consistent interrelationships. The quantitative multiple regression analysis indicates that the five independent variables explain 71.3% of the variation in students’ motivation to succeed in introductory mathematics courses.  相似文献   

19.
In this article, we demonstrate that prospective teachers’ content knowledge related to defining mathematical concepts is dependent on content area. We use the example of generation (a research tool we developed in a previous study) to investigate prospective teachers’ knowledge. We asked prospective secondary mathematics teachers to provide multiple examples of definitions of concepts from different areas of mathematics. We examined teacher-generated examples of concept definition and analysed individual and collective example spaces, focusing on their correctness and richness. We demonstrate differences in prospective teachers’ knowledge associated with defining mathematical concepts in geometry, algebra and calculus.  相似文献   

20.
In this paper we discuss three ways of introducing calculus all based on concepts which students would either already know or which can be introduced without much difficulty at this stage of their mathematical training. The aim of this paper is to persuade teachers of mathematics that topics in ‘higher mathematics’, specifically calculus, can and should be presented to students in terms of concepts with which they are familiar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号