首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel machine learning aided structural reliability analysis for functionally graded frame structures against static loading is proposed. The uncertain system parameters, which include the material properties, dimensions of structural members, applied loads, as well as the degree of gradation of the functionally graded material (FGM), can be incorporated within a unified structural reliability analysis framework. A 3D finite element method (FEM) for static analysis of bar-type engineering structures involving FGM is presented. By extending the traditional support vector regression (SVR) method, a new kernel-based machine learning technique, namely the extended support vector regression (X-SVR), is proposed for modelling the underpinned relationship between the structural behaviours and the uncertain system inputs. The proposed structural reliability analysis inherits the advantages of the traditional sampling method (i.e., Monte-Carlo Simulation) on providing the information regarding the statistical characteristics (i.e., mean, standard deviations, probability density functions and cumulative distribution functions etc.) of any concerned structural outputs, but with significantly reduced computational efforts. Five numerical examples are investigated to illustrate the accuracy, applicability, and computational efficiency of the proposed computational scheme.  相似文献   

2.
Practically, the performance of many engineering problems can be defined using a complex implicit limit state function. Approximation of the accurate failure probability is very time-consuming and inefficient based on Monte Carlo simulation (MCS) for complex performance functions. M5 model tree (M5Tree) model is robust approach for simulation and prediction phenomena, which provides ability to dealing with complex implicit problems by dividing them into smaller problems. By improving the efficiency of reliability method using accurate approximated failure probability, an efficient reliability method using the MCS and M5Tree is proposed to calibrate the performance function and estimate the failure probability, respectively. The superiorities including simplicity and accuracy of M5Tree meta-model are investigated to evaluate the actual performance function through five nonlinear complex mathematical and structural reliability problems. The proposed reliability method-based MCS and M5Tree improved the computational efforts for evaluating the performance function in reliability analysis. The M5Tree significantly increased the efficiency of reliability analysis with accurate failure probability.  相似文献   

3.
The safety analysis of systems with nonlinear performance function and small probability of failure is a challenge in the field of reliability analysis. In this study, an efficient approach is presented for approximating small failure probabilities. To meet this aim, by introducing Probability Density Function (PDF) control variates, the original failure probability integral was reformulated based on the Control Variates Technique (CVT). Accordingly, using the adaptive cooperation of the subset simulation (SubSim) and the CVT, a new formulation was offered for the approximation of small failure probabilities. The proposed formulation involves a probability term (resulting from a fast-moving SubSim) and an adaptive weighting term that refines the obtained probability. Several numerical and engineering problems, involving nonlinear performance functions and system-level reliability problems, are solved by the proposed approach and common reliability methods. Results showed that the proposed simulation approach is not only more efficient, but is also robust than common reliability methods. It also presents a good potential for application in engineering reliability problems.  相似文献   

4.
This article deals with the analysis of trolley impact on the dynamic behaviour of the flexible structure of the mega quayside container crane (QCC) boom, identified as the most relevant structural part. It develops a modelling method for the dynamic response of the large flexible structure of the QCC boom under a moving trolley. By using FEM the original structure of the whole crane structure is reduced to an equivalent model of the boom. The boom is in this way modelled as a system with distributed parameters, comprising reduced stiffnesses and lumped masses from other parts of the upper structure. The article looks at the moving mass approach to achieve the desired performance of the QCC. Differential equations of the mathematical model are obtained by using Lagrange's equations and the assumed mode method. The continuum is discretized by a finite number of admissible functions. Deterministic simulation gives the dynamic response of the boom for quay-to-ship container transfer. Results are obtained for the boom deflection and bending moment values, as well as for the dynamic amplification factor of deflection.  相似文献   

5.
This paper investigates the issue of reliability assessment for engineering structures involving mixture of stochastic and non-stochastic uncertain parameters through the Finite Element Method (FEM). Non-deterministic system inputs modelled by both imprecise random and interval fields have been incorporated, so the applicability of the structural reliability analysis scheme can be further promoted to satisfy the intricate demand of modern engineering application. The concept of robust structural reliability profile for systems involving hybrid uncertainties is discussed, and then a new computational scheme, namely the unified interval stochastic reliability sampling (UISRS) approach, is proposed for assessing the safety of engineering structures. The proposed method provides a robust semi-sampling scheme for assessing the safety of engineering structures involving multiple imprecise random fields with various distribution types and interval fields simultaneously. Various aspects of structural reliability analysis with multiple imprecise random and interval fields are explored, and some theoretically instructive remarks are also reported herein.  相似文献   

6.
研究了亚指数分布族中一类特殊的分布,在年索赔额服从该特殊分布的假设下,推导出了的终极破产概率的渐进表达式,提出了可以用随机模拟方法对于服从亚指数分布的破产概率进行模拟计算的方法.从实践的角度来说,更具有可操作性,为保险业提供了一些应对极值概率事件的理论依据和检验方法.  相似文献   

7.
基于双边定数截尾样本,选取未知参数的先验分布为无信息先验和Gamma分布,分别在平方损失和LINEX损失下,研究了Pareto分布的形状参数和可靠性指标(可靠度和失效率)的Bayes估计.为了研究估计的精度,采用Monte-Carlo模拟的方法给出了数值检验的例子.结果表明在LINEX损失下并选用Gamma先验分布时,参数的Bayes估计是最优的.  相似文献   

8.
This study proposes a new reliability sensitivity analysis approach using an efficient hybrid simulation method that is a combination of subset simulation, importance sampling and control variates techniques. This method contains a probability term (a fast-moving by subset simulation) and an adaptive weighting part that improves the calculated probability. The Finite Difference Method is used to obtain reliability sensitivities, and the related formulation is derived. Five numerical examples (four-branch model, beam-cable system, one-story frame, ring-stiffened cylinder buckling, and 25-bar steel truss) are presented to describe the applications of the proposed method. The results are compared with those obtained by the available techniques. The results revealed that the proposed method efficiently and accurately solves rare-event, system-level, and real-world engineering problems with explicit and implicit limit state functions.  相似文献   

9.
随机结构系统基于可靠性的优化设计   总被引:5,自引:0,他引:5  
提出了以梁板(薄板)为基体的随机结构系统(即结构元件的面积、长度、弹性模量和强度等均为随机变量)在随机载荷作用下,基于可靠性的优化设计方法.给出了随机结构系统安全余量和系统可靠性指标的敏度表达式;给出最佳矢量型算法.首先是用改进的一次二阶矩和随机有限元法求出安全余量的可靠性指标的表达式,然后用概率网络估算(PNET)法求出系统失效概率的公式,对该式两边求导得出了系统可靠性指标的敏度表达式,进而用最佳矢量型算法进行优化设计.在优化迭代过程中,采用梯度步和最佳矢量步相结合的方法进行计算.最后给出了一个算例,说明该方法计算效率高,收敛稳定,适合工程应用.  相似文献   

10.
The accurate estimation of rare event probabilities is a crucial problem in engineering to characterize the reliability of complex systems. Several methods such as Importance Sampling or Importance Splitting have been proposed to perform the estimation of such events more accurately (i.e., with a lower variance) than crude Monte Carlo method. However, these methods assume that the probability distributions of the input variables are exactly defined (e.g., mean and covariance matrix perfectly known if the input variables are defined through Gaussian laws) and are not able to determine the impact of a change in the input distribution parameters on the probability of interest. The problem considered in this paper is the propagation of the input distribution parameter uncertainty defined by intervals to the rare event probability. This problem induces intricate optimization and numerous probability estimations in order to determine the upper and lower bounds of the probability estimate. The calculation of these bounds is often numerically intractable for rare event probability (say 10?5), due to the high computational cost required. A new methodology is proposed to solve this problem with a reduced simulation budget, using the adaptive Importance Sampling. To this end, a method for estimating the Importance Sampling optimal auxiliary distribution is proposed, based on preceding Importance Sampling estimations. Furthermore, a Kriging-based adaptive Importance Sampling is used in order to minimize the number of evaluations of the computationally expensive simulation code. To determine the bounds of the probability estimate, an evolutionary algorithm is employed. This algorithm has been selected to deal with noisy problems since the Importance Sampling probability estimate is a random variable. The efficiency of the proposed approach, in terms of accuracy of the found results and computational cost, is assessed on academic and engineering test cases.  相似文献   

11.
Pareto分布环境因子的估计及其应用   总被引:2,自引:0,他引:2  
给出了Pareto分布环境因子的定义,讨论了在定数截尾样本下Pareto分布环境因子的极大似然估计和修正极大似然估计,并尝试把环境因子用于可靠性评估中.最后运用Monte Carlo方法对极大似然估计,修正极大似然估计和可靠性指标的均方误差(MSE),进行了模拟比较,结果表明修正极大似然估计优于极大似然估计且考虑环境因子的可靠性评估结果较好.  相似文献   

12.
This paper proposes a novel numerical method for predicting the probability density function of generalized eigenvalues in the mechanical vibration system with consideration of uncertainties in structural parameters. The eigenproblem of structural vibration is presented by first and the sensitivity of generalized eigenvalues with respect to structural parameters can be derived. The probability density evolution method is then developed to capture the probability density function of generalized eigenvalues considering uncertain material properties. Within the proposed method, the probability density evolution equation for the generalized eigenvalue problem is established accounting for the sensitivity of generalized eigenvalues with respect to structural parameters. A new variable which connects generalized eigenvalues to structural parameters is then introduced to simplify the original probability density evolution equation. Next, the simplified probability density evolution equation is solved by using the finite difference method with total variation diminishing schemes. Finally, the probability density function as well as the second-order statistical quantities of generalized eigenvalues can be predicted. Numerical examples demonstrate that the proposed method yields results consistent with Monte-Carlo simulation method within significantly less computation time and the coefficients of variation of uncertain parameters as well as the total number of them have remarkable effects on stochastic characteristics of generalized eigenvalues.  相似文献   

13.
This study is concerned with model selection of lifetime and survival distributions arising in engineering reliability or in the medical sciences. We compare various distributions—including the gamma, Weibull, and lognormal—with a new distribution called geometric extreme exponential. Except for the lognormal distribution, the other three distributions all have the exponential distribution as special cases. A Monte Carlo simulation was performed to determine sample sizes for which survival distributions can distinguish data generated by their own families. Two methods for decision are by maximum likelihood and by Kolmogorov distance. Neither method is uniformly best. The probability of correct selection with more than one alternative shows some surprising results when the choices are close to the exponential distribution.  相似文献   

14.
The present study deals with support vector regression-based metamodeling approach for efficient seismic reliability analysis of structure. Various metamodeling approaches e.g. response surface method, Kriging interpolation, artificial neural network, etc. are usually adopted to overcome computational challenge of simulation based seismic reliability analysis. However, the approximation capability of such empirical risk minimization principal-based metamodeling approach is largely affected by number of training samples. The support vector regression based on the principle of structural risk minimization has revealed improved response approximation ability using small sample learning. The approach is explored here for improved estimate of seismic reliability of structure in the framework of Monte Carlo Simulation technique. The parameters necessary to construct the metamodel are obtained by a simple effective search algorithm by solving an optimization sub-problem to minimize the mean square error obtained by cross-validation method. The simulation technique is readily applied by random selection of metamodel to implicitly consider record to record variations of earthquake. Without additional computational burden, the approach avoids a prior distribution assumption about approximated structural response unlike commonly used dual response surface method. The effectiveness of the proposed approach compared to the usual polynomial response surface and neural network based metamodels is numerically demonstrated.  相似文献   

15.
Reliability analysis requires modeling of joint probability distribution of uncertain parameters, which can be a challenge since the random variables representing the parameter uncertainties may be correlated. For convenience, a Gaussian data dependence is commonly assumed for correlated random variables. This paper first investigates the effect of multidimensional non-Gaussian data dependences underlying the multivariate probability distribution on reliability results. Using different bivariate copulas in a vine structure, various data dependences can be modeled. The associated copula parameters are identified from available statistical information by moment matching techniques. After the development of the vine copula model for representing the multivariate probability distribution, the reliability involving correlated random variables is evaluated based on the Rosenblatt transformation. The impact of data dependence is significant because a large deviation in failure probability is observed, which emphasizes the need for accurate dependence characterization. A practical method for dependence modeling based on limited data is thus provided. The result demonstrates that the non-Gaussian data dependences can be real in practice, and the reliability can be biased if the Gaussian dependence is used inappropriately. Moreover, the effect of conditioning order on reliability should not be overlooked except that the vine structure contains only one type of copula.  相似文献   

16.
In this paper, Monte-Carlo methods used for the reliability assessment of structures under stochastic excitations are further advanced, e.g., by leading the generated samples towards the low probability range which is practically not assessable by direct Monte-Carlo methods. Based on criteria denoting the realizations that lead most likely to failure, a simulation technique called the Russian Roulette and Splitting (RR&S) is presented and discussed briefly. In a numerical example, the RR&S procedure is compared with the direct Monte-Carlo simulation method (MCS), demonstrating comparative accuracy.Published in Ukrainskyi Matematychnyi Zhurnal, Vol. 56, No. 7, pp. 1002–1008, July, 2004.  相似文献   

17.
逐步增加Ⅱ型截尾下比例危险率模型的可靠性分析   总被引:1,自引:0,他引:1  
基于逐步增加Ⅱ型截尾样本,分别在均方损失和Linex损失下,利用ML-Ⅱ方法研究了比例危险率模型的参数和可靠性指标的经验Bayes估计问题。为了研究估计结果的精确性,分析了一个实际应用例子,并利用Monte-Carlo方法给出一个数值模拟例子,结果表明在非对称Linex损失下,经验Bayes估计更具灵活性,且结果更加有效。  相似文献   

18.
This paper deals with a parallel load-sharing reliability system with cold standby redundancy and ample repair facilities. That is, we have n identical parallel units, of which at most k units are operating simultaneously. If less than k units are available, the system operates at a proportionally reduced level. For this system, an approximate method is given for the calculation of the probability distribution of that proportion of the system capacity that cannot be used in a given time period. The method is based on an approximation of the k-out-of-n multistate system by a two-state single component. Validation of the approximation using Monte-Carlo simulation shows satisfactory performance. Also, sensitivity results are given, showing in particular a decreasing sensitivity of the measures of performance to the distributional form of the unit lifetimes and repair times as the size of the system increases. Furthermore, it is found that the effect of the distributional form of the unit lifetimes dominates that of the unit repair times.  相似文献   

19.
如何推断系统的故障概率,是目前可靠性工程领域的一个重要问题.而对具有动态随机性故障的可修系统采用静态近似处理,经常导致计算的可靠性指标与实际情况相差甚远,采用蒙特卡罗方法产生等价于船用核动力系统基本部件故障率的随机数,代入到仿真模型中,经过逻辑运算得到等价于系统故障概率的随机数,对多次仿真得到的数据进行统计推断,便得到系统故障的概率分布及相应的置信区间.此方法计算结果精度高,对船用核动力装置的可靠性分析有重要意义.  相似文献   

20.
This paper presents an efficient third-moment saddlepoint approximation approach for probabilistic uncertainty analysis and reliability evaluation of random structures. By constructing a concise cumulant generating function (CGF) for the state variable according to its first three statistical moments, approximate probability density function and cumulative distribution function of the state variable, which may possess any types of distribution, are obtained analytically by using saddlepoint approximation technique. A convenient generalized procedure for structural reliability analysis is then presented. In the procedure, the simplicity of general moment matching method and the accuracy of saddlepoint approximation technique are integrated effectively. The main difference of the presented method from existing moment methods is that the presented method may provide more detailed information about the distribution of the state variable. The main difference of the presented method from existing saddlepoint approximation techniques is that it does not strictly require the existence of the CGFs of input random variables. With the advantages, the presented method is more convenient and can be used for reliability evaluation of uncertain structures where the concrete probability distributions of input random variables are known or unknown. It is illustrated and examined by five representative examples that the presented method is effective and feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号