首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
Physical processes with memory and hereditary properties can be best described by fractional differential equations due to the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional differential equations using cubic B-spline wavelet. Analytical expressions of fractional derivatives in Caputo sense for cubic B-spline functions are presented. The main characteristic of the approach is that it converts such problems into a system of algebraic equations which is suitable for computer programming. It not only simplifies the problem but also speeds up the computation. Numerical results demonstrate the validity and applicability of the method to solve fractional differential equation.  相似文献   

2.
This paper presents a new approach for solving accurate approximate analytical higher-order solutions for strong nonlinear Duffing oscillators with cubic–quintic nonlinear restoring force. The system is conservative and with odd nonlinearity. The new approach couples Newton’s method with harmonic balancing. Unlike the classical harmonic balance method, accurate analytical approximate solutions are possible because linearization of the governing differential equation by Newton’s method is conducted prior to harmonic balancing. The approach yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution. Using the approach, accurate higher-order approximate analytical expressions for period and periodic solution are established. These approximate solutions are valid for small as well as large amplitudes of oscillation. In addition, it is not restricted to the presence of a small parameter such as in the classical perturbation method. Illustrative examples are presented to verify accuracy and explicitness of the approximate solutions. The effect of strong quintic nonlinearity on accuracy as compared to cubic nonlinearity is also discussed.  相似文献   

3.
In this study, the governing equations for large deflection of elastic thin shallow shells are deduced into an algebraic cubic equation to determine the unknown coefficient of the assumed deflection by applying Galerkin's method in combination with the algebraic polynomial and Fourier series. For the dynamic problem, the coefficient is replaced by an unknown function of time; after the same process is applied, the governing equations are deduced to be a nonlinear ODE of order two called the Duffing equation, and its analytical solution is known. The combination of the algebraic polynomial and Fourier series gives very rapid convergence in the asymptotic solutions.  相似文献   

4.
In this article a numerical technique is presented for the solution of Fokker‐Planck equation. This method uses the cubic B‐spline scaling functions. The method consists of expanding the required approximate solution as the elements of cubic B‐spline scaling function. Using the operational matrix of derivative, the problem will be reduced to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
Pressure-volume-temperature (P-V-T) data are required in simulating chemical plants because the latter usually involve production, separation, transportation, and storage of fluids. In the absence of actual experimental data, the pertinent mathematical model must rely on phase behaviour prediction by the so-called equations of state (EOS). When the plant model is a combination of differential and algebraic equations, simulation generally relies on numerical integration which proceeds in a piecewise fashion unless an approximate solution is needed at a single point. Needless to say, the constituent algebraic equations must be efficiently re-solved before each update of derivatives. Now, Ostrowski’s fourth-order iterative technique is a partial substitution variant of Newton’s popular second-order method. Although simple and powerful, this two-point variant has been utilised very little since its publication over forty years ago. After a brief introduction to cubic equations of state and their solution, this paper solves five of them. The results clearly demonstrate the superiority of Ostrowski’s method over Newton’s, Halley’s, and Chebyshev’s solvers.  相似文献   

6.
In this paper the development of the method presented in [1] is carried out with application to two types of integral equations encountered in mathematical physics in the investigation of many mixed problems with circular separation line of boundary conditions and in the investigation of plane mixed problems.

The algorithm is given for reducing these integral equations to solution of equivalent infinite linear algebraic systems. It is proved that the resulting infinite systems are quasi completely regular for sufficiently large values of dimensionless parameter A which enters into the systems. It is shown that reduction (truncation) of infinite systems results in finite systems of linear algebraic equations with almost triangular matrices. The last circumstance simplifies considerably the solution of these finite systems after which the solution of initial integral equations is found from simple equations. For given accuracy of the approximate solution and decrease of parameter λ the number of equations in reduced systems increases.

As an example the solution is presented for the axisymmetric problem of a die acting on an elastic layer lying without friction on a rigid foundation.  相似文献   


7.
Every finite branch local solution to the sixth Painlevé equation around a fixed singular point is an algebraic branch solution. In particular a global solution is an algebraic solution if and only if it is finitely many-valued globally. The proof of this result relies on algebraic geometry of Painlevé VI, Riemann-Hilbert correspondence, geometry and dynamics on cubic surfaces, resolutions of Kleinian singularities, and power geometry of algebraic differential equations. In the course of the proof we are also able to classify all finite branch solutions up to Bäcklund transformations.  相似文献   

8.
This paper considers a recently proposed interval algebraic model of linear equilibrium equations in mechanics. Based on the algebraic completion of classical interval arithmetic (called Kaucher arithmetic), this model provides much smaller ranges for the unknowns than the model based on classical interval arithmetic and fully conforms to the equilibrium principle. The general form of interval equilibrium equations for truss structures is presented. Two numerical approaches for finding the formal (algebraic) solution to the considered class of interval equilibrium equations are proposed. A methodology for adjusting interval parameters so that the equilibrium equations be completely satisfied is also presented. Numerical examples illustrate the theoretical considerations.  相似文献   

9.
Many real nonlinear evolution equations exhibiting soliton properties display a special superposition principle, where an infinite array of equally spaced, identical solitons constitutes an exact periodic solution. This arrangement is studied for the modified Korteweg–de Vries equation with positive cubic nonlinearity, which possesses algebraic solitons with nonvanishing far field conditions. An infinite sum of equally spaced, identical algebraic pulses is evaluated in closed form, and leads to a complex valued solution of the nonlinear evolution equation.  相似文献   

10.
里特—吴特征集提供了用计算机解代数方程的有效方法,但迄今为止,还不能由这一方法给出孤立解的重数.文章给出了孤立解的重数的两个定义,它们是等价的,并且在范德瓦尔登的定义有意义时与后者一致.一个定义是在非标准分析的框架中,另一个则是标准分析的.在证明与范德瓦尔登的定义一致时,非标准分析的定义是本质的.通过再一次在计算机上应用里特—吴方法于由原方程得到的含无穷小参数的代数方程,可以得到原方程的孤立解的重数.文中给出一个例子的计算机计算结果:首先得出有八个解,然后给出它们的重数:其中有两个的重数为六重,另六个为单根.  相似文献   

11.
In this paper we present an algorithmization of the Thomas method for splitting a system of partial differential equations and (possibly) inequalities into triangular subsystems whose Thomas called simple. The splitting algorithm is applicable to systems whose elements are differential polynomials in unknown functions and polynomials in independent variables. Simplicity properties of the subsystems make easier their completion to involution. Our algorithmization uses algebraic Gröbner bases to avoid some unnecessary splittings.  相似文献   

12.
In this paper, a parametric variant of Steffensen-secant method and three fast variants of Steffensen-secant method for solving nonlinear equations are suggested. They achieve cubic convergence or super cubic convergence for finding simple roots by only using three evaluations of the function per step. Their error equations and asymptotic convergence constants are deduced. Modified Steffensen’s method and modified parametric variant of Steffensen-secant method for finding multiple roots are also discussed. In the numerical examples, the suggested methods are supported by the solution of nonlinear equations and systems of nonlinear equations, and the application in the multiple shooting method.  相似文献   

13.
In this article a discrete weighted least-squares method for the numerical solution of elliptic partial differential equations exhibiting smooth solution is presented. It is shown how to create well-conditioned matrices of the resulting system of linear equations using algebraic polynomials, carefully selected matching points and weight factors. Two simple algorithms generating suitable matching points, the Chebyshev matching points for standard two-dimensional domains and the approximate Fekete points of Sommariva and Vianello for general domains, are described. The efficiency of the presented method is demonstrated by solving the Poisson and biharmonic problems with the homogeneous Dirichlet boundary conditions defined on circular and annular domains using basis functions in the form satisfying and in the form not satisfying the prescribed boundary conditions.  相似文献   

14.
无拉力Winkler地基上自由边矩形Reissner板的弯曲   总被引:6,自引:0,他引:6  
本文提出了一种求解无拉力Winkler地基上自由边矩形Reissner板受任意载荷的弯曲问题的解析方法.通过适当设定满足可导条件的Fourier级数加补充项形式的挠度函数和剪力函数,把给定边界条件下的微分方程化成最简形式的无穷代数方程组.对于常规的Winkler地基,可直接求解;而对于无拉力Winkler地基,方程组为一组弱非线性代数方程组.使用迭代法容易得到解.  相似文献   

15.
病态线性代数方程组的一种刚性问题数值解法   总被引:8,自引:0,他引:8  
吴新元 《计算数学》1999,21(2):157-162
1.引言文[1,2]中提出的预估校正法是国内计算数学工作者研究刚性常微分方程数值解法的较早期的工作.并且作者将自己构造的算法用于解病态线性代数方程组卜个FORTRAN标准程序见[3]).文[4,5]根据李雅普诺夫稳定性理论建立了病态线性代数方程组的解与对应刚性常微分方程组初值问题的解之间的关系并且采用Lambert提出的解刚性问题的非线性单步方法问给出了解病态线性代数方程组的非线性迭代法.但这个非线性方法有两大缺点:第一,数值解不能有零分量;第二,代数精确度较差.为此本文采用局部指数逼近法建立的解刚性问题的二阶显式…  相似文献   

16.
Three numerical techniques based on cubic Hermite spline functions are presented for the solution of Lane–Emden equation. Some properties of Hermite splines are presented and are utilized to reduce the solution of Lane–Emden equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of these techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
We describe an analytic-numerical method of solution of one-dimensional static thermoelasticity problems for layered plates, heated in different ways. We take into account the cubic dependence of the coefficients of heat conductivity and arbitrary nature of the dependence of other physicomechanical parameters on temperature. Here, using the constructed exact solution of an auxiliary problem, we have reduced the heat conduction problems, irrespective of the number of layers, to the solution of one or a system of two nonlinear algebraic equations. We have also studied the temperature fields and stresses in four-layer plates under conditions of complex heat exchange.  相似文献   

18.
In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.  相似文献   

19.
Systems of differential algebraic equations are examined. A method is proposed for transforming the rectangular matrix of algebraic equations to block diagonal form. This method ensures the prescribed accuracy of the solution with respect to the original system of equations.  相似文献   

20.
A class of preconditioners for solving non-Hermitian positive definite systems of linear algebraic equations is proposed and investigated. It is based on Hermitian and skew-Hermitian splitting of the initial matrix. A generalization for saddle point systems having semidefinite or singular (1, 1) blocks is given. Our approach is based on an augmented Lagrangian formulation. It is shown that such preconditioners can be efficiently used for the iterative solution of systems of linear algebraic equations by the GMRES method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号