首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

2.
Two vinyl homopolymers poly(N‐(4‐(4‐(4‐vinylbenzyloxy)styryl)phenyl)‐N‐phenylbenzenamine) (PVST ) and poly(4‐vinyltriphenylamine) (PTPA ) containing pendant hole‐transporting triphenylamine and 4‐oxystyryltriphenylamine groups, respectively, were synthesized by radical polymerization and employed as hosts for tris(2‐phenylpyridine) iridium [Ir(ppy)3] phosphor. Structural influences of the hole‐transporting groups upon optoelectronic properties were investigated by photophysical, electrochemical, and electroluminescent methods. The polymers were readily soluble in common organic solvents and their weight‐average molecular weights (Mw) were 5.68 × 104 and 1.90 × 104, respectively. The emission spectra (both photoluminescence, PL and electroluminescent, EL) of the blends [PTPA with 4 wt % Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from PTPA to Ir(ppy)3. The HOMO levels of PVST and PTPA, estimated from onset oxidation potentials in their cyclic voltammograms, were ?5.14 and ?5.36 eV, which are much higher than ?5.8 eV of the conventional poly(9‐vinylcarbazole) (PVK) host owing to high hole‐affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using PVST and PTPA as hosts and Ir(ppy)3 as dopant (indium tin oxide, ITO/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)/PVST or PTPA:Ir(ppy)3(4 wt %):PBD(40 wt %)/BCP/Ca/Al), were investigated. The maximum luminance and luminance efficiency of the PTPA device were 9220 cd/m2 and 6.1 cd/A, respectively, which were significantly improved relative to those of PVK and PVST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7960–7971, 2008  相似文献   

3.
We prepared two vinyl copolymers P1 and P2 containing pendant distyrylbenzene and aromatic 1,3,4‐oxadiazole derivatives, respectively, from their precursor poly(styrene‐ran‐4‐vinylbenzyl chloride) (Mw = 11,400, PDI = 1.18), which had been prepared by the controlled radical polymerization (RAFT). Two main chain polymers containing similar isolated distyrylbenzene ( P3) and aromatic 1,3,4‐oxadiazole ( P4 ) chromophores were also synthesized for comparative study. The resulted copolymers ( P1 – P4 ) are soluble in common organic solvents and are basically amorphous materials with 5% weight‐loss temperature higher than 360 °C. The PL spectral results reveal that the architecture of P1 prevents the formation of inter‐ or intramolecular interaction. The HOMO and LUMO levels of P2 , estimated from cyclic voltammetric data, are ?5.96 and ?3.81 eV, respectively, which are much lower than those of P1 (?5.12 and ?3.11 eV). The emission of blend from P1 and P2 are contributed mainly from distyrylbenzene fluorophore (~450 nm) owing to efficient energy transfer. Moreover, the blend exhibits three kinds of redox behavior depending on their weight ratios. The luminance and current efficiency of the EL device lpar;ITO/PEDOT/ MEH ‐ PPV + P2 /Al) are 503 cd/m2 and 0.11 cd/A, which can be improved to 1285 cd/m2 and 0.44 cd/A, respectively, as the weight ratio of P2 increases from 0 to 20%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5362–5377, 2006  相似文献   

4.
An adamantane‐based host material, namely, 4‐{3‐[4‐(9H‐carbazol‐9‐yl)phenyl]adamantan‐1‐yl}benzonitrile (CzCN‐Ad), was prepared by linking an electron‐donating carbazole unit and an electron‐accepting benzonitrile moiety through an adamantane bridge. In this approach, two functional groups were attached to tetrahedral points of adamantane to construct an “sp3” topological configuration. This design strategy endows the host material with a high triplet energy of 3.03 eV due to the disruption of intramolecular charge transfer. Although CzCN‐Ad has a low molecular weight, the rigid nonconjugated adamantane bridge results in a glass transition temperature of 89 °C. These features make CzCN‐Ad suitable for fabricating blue phosphorescent organic light‐emitting diodes (PhOLEDs). The devices based on sky‐blue phosphor bis[(4,6‐difluorophenyl)pyridinato‐N,C2′](picolinato)iridium(III) (FIrpic) achieved a high maximum external quantum efficiency (EQE) of 24.1 %, which is among the best results for blue PhOLEDs ever reported. Furthermore, blue PhOLEDs with bis(2,4‐difluorophenylpyridinato)‐tetrakis(1‐pyrazolyl)borate iridium(III) (FIr6) as dopant exhibited a maximum EQE of 14.2 % and a maximum luminance of 34 262 cd m?2. To the best of our knowledge, this is the highest luminance ever reported for FIr6‐based PhOLEDs.  相似文献   

5.
Soluble yellow/orange‐emitting poly[tris(2,5‐dihexyloxy‐1,4‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)] derivatives ( 6 ) were synthesized and characterized. These polymers contained oligo(p‐phenylene vinylene) chromophores of equal conjugation length, which were jointed via a common m‐phenylene unit. An optical comparison of 6 and its model compound ( 8 ) at room temperature and low temperatures revealed the similarity in their absorption and fluorescence band structures. The vibronic band structure of 6 was assigned with the aid of the spectroscopic data for 8 at the low temperatures. 6 was electroluminescent and had an emission maximum wavelength at approximately 565 nm. With the device indium tin oxide/PEDOT/ 6 /Ca configuration, the polymer exhibited an external quantum efficiency as high as 0.25%. Simple substitution on m‐phenylene of 6 raised the electroluminescence output by a factor of about 10. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5853–5862, 2004  相似文献   

6.
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058  相似文献   

7.
Blue‐emitting poly{[5‐(diphenylamino)‐1,3‐phenylenevinylene]‐alt‐(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)} ( 3 ), poly{[5‐bis‐(4‐butyl‐phenylamino)‐1,3‐phenylenevinylene]‐alt‐(1,3‐phenylene vinylene)} ( 4 ), and poly(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene) ( 5 ) were synthesized by the Wittig–Horner reaction. Although polymers 3–5 possess fluorescent quantum yields of only 13–34% in tetrahydrofuran solution, their films appear to be highly luminescent. Attachments of substituents tuned the emission color of thin films to the desirable blue region (λmax = 462–477 nm). Double‐layer light‐emitting‐diode devices with 3 and 5 as an emissive layer produced blue emission (λem = 474 and 477 nm) with turn‐on voltages of 8 and 11 V, respectively. The external quantum efficiencies were up to 0.13%. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2800–2809, 2005  相似文献   

8.
Using a new aromatic 1,2,4‐triazole branching monomer (4.8–13.3 mol %), three hyperbranched polyfluorenes ( P2 – P4 ) were synthesized by the Suzuki coupling reaction to investigate the structural effect on optoelectronic properties. Poly(9,9‐dihexylfluorene) ( P1 ) was also prepared for comparative investigation. Their weight‐average molecular weights and polydispersity indices are in the range of 1.16 × 104 to 5.9 × 104 and 1.49–2.25, respectively. Optical properties, both in solution and film state, were investigated using absorption and photoluminescence (PL) spectra. In film state, the absorption and PL spectra peaked at 377–392 and 424–425 nm, respectively, blue‐shift with increasing triazole concentration. Furthermore, a linear relationship between 1/λmax,abs and 1/(1 ? ntriazole) is correlated (n: molar fraction), indicating a smooth decrease in conjugation length by incorporation of the branch unit. The P4 containing 13.3 mol % triazole reveals stable blue emission even at 150 °C (in air). The HOMO and LUMO levels of P2 – P4 , estimated from cyclic voltammograms, are ?5.69, ?5.73, ?5.78 eV and ?2.63, ?2.64, ?2.63 eV, respectively. The maximal brightness (current efficiency) of the electroluminescent devices (ITO/PEDOT:PSS/ P2 – P4 /Ca/Al) improves from 828 cd/m2 (0.19 cd/A) to 2054 cd/m2 (0.46 cd/A) with increasing triazole concentration. The results suggest that incorporation of aromatic 1,2,4‐triazole branch units is an effective way to improve annealing stability and EL performance of polyfluorenes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4465–4476, 2007  相似文献   

9.
New copoly(aryl ether)s ( P1 – P3 ) containing alternate 2,5‐dihexyloxy‐1,4‐di(m‐ethoxystyryl)benzene ( P1 , P2 ) or 2,5‐dihexyloxy‐1,4‐distyrylbenzene ( P3 ) chromophores and aromatic 1,3,4‐oxadiazole ( P1 ) or 3,3″‐terphenyldicarbonitrile ( P2 , P3 ) segments were prepared by Horner reaction ( P1 and P2 ) or nucleophilic displacement reaction ( P3 ). They are basically amorphous materials with 5% weight‐loss temperature above 410 °C. Their absorption, photoluminescence spectra, and quantum yields are dependent on the composition of the isolated fluorophores. The emissions are exclusively dominated by 1,4‐distyrylbenzene segments via excitation energy transfer from electron‐transporting 1,3,4‐oxadiazole ( P1 ) or 3,3″‐terphenyldicarbonitrile ( P2 , P3 ) chromophores. The HOMO and LUMO energy levels have been estimated from their cyclic voltammograms, and the observations confirm that oxidation and reduction start from the emitting 1,4‐distyrylbenzene and electron‐transporting segments, respectively, indicating that both carriers affinity can be enhanced simultaneously. Among the two‐layer PLED devices (ITO/PEDOT/ P1 – P3 /Al), P1 exhibits the best performance with a turn‐on field of 4 × 105 V/cm and a maximum luminance of 225 cd/m2. However, P2 emits green–yellow light (555 nm), owing to the excimer emission. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5009–5022, 2005  相似文献   

10.
Vinyl copolymers (PCOn), containing pendant carbazole and aromatic 1,3,4‐oxadiazole attached with dodecyloxy group, were prepared from their corresponding precursor poly(9‐vinyl carbazole‐co‐4‐vinylbenzyl chloride) (PCBn) by the Williamson condensation (n: mole% of 4‐vinylbenzyl chloride). These copolymers were used as host materials for green phosphorescent light‐emitting diodes after blending 4 wt % of Ir(ppy)3. PL spectra of the PCOn films showed the formation of excimer or exciplex. The phosphorescent EL devices were fabricated with a configuration of ITO/PEDOT:PSS/host copolymers:Ir(ppy)3/BCP/Ca/Al. The PL and EL spectra of the blends [PCOn:Ir(ppy)3] revealed dominant green emission at 517 nm attributed to Ir(ppy)3 due to efficient energy transfer from the host to Ir(ppy)3. Efficient green phosphorescent OLEDs was obtained when employing copolymer PCO16 as the host and Ir(ppy)3 as the guest. The maximal luminance efficiency and the maximal luminance of this device were 17.9 cd/A and 19,903 cd/m2, respectively. After doped with Ir(ppy)3, the morphology of the films, both controlled PCO20 and PCO20 with attached dodecyloxy groups, were investigated by tapping‐mode AFM and FE‐SEM. The film of PCO20 exhibited uniform, featureless image and showed much better device performance than PCO20, which have been attributed to good compatibility of PCO20 with Ir(ppy)3. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5180–5193, 2008  相似文献   

11.
Four new copolyethers ( P1 – P4 ) consisting of two isolated emitting chromophores [2,5‐dihexyloxy‐1,4‐distyrylbenzene (HODSB) and 2,5‐dihexyloxy‐1,4‐di(4‐methylenestyryl)benzene (HOMDSB) for P1 and P2 , 2,5‐dihexyl‐1,4‐distyrylbenzene (HDSB) and HOMDSB for P3 and P4 ] in the backbone, in which P2 and P4 further contain electron‐transporting chromophores [7‐oxy‐4‐methylcoumarin (OMC)] in the side chain, were successfully prepared by the Heck coupling reaction. The photoluminescence spectra and quantum yields of the copolymers depended mainly on compositions of the isolated fluorophores. Their highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were estimated from their cyclic voltammograms. Electrochemical investigations proved that the oxidation started at hole‐transporting DSB segments, whereas reduction began at electron‐transporting OMC groups in P2 and P4 . The electron affinity of P2 and P4 was enhanced by introducing electron‐transporting OMC chromophores. Double‐layer light‐emitting diodes (ITO/PEDOT:PSS / polymer/Al) of P1 and P2 revealed green electroluminescence, and those of P3 and P4 emitted blue light. Moreover, incorporation of OMC side groups effectively reduced turn‐on electric field and enhanced luminance efficiency of the EL devices due to increased electron affinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 211–221, 2007  相似文献   

12.
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008  相似文献   

13.
Four new soluble polymers containing a 2,7‐carbazole unit and a 2,1,3‐benzothiadiazole unit in the main chain were synthesized by Suzuki polycondensation. Variation of the substituent groups (R) at 5‐position of 2,1,3‐benzothiadiazole unit resulted in different color emission of the copolymers. Thus, when R was ? CH3 (or ? H), the polymer showed yellow–green (or red) emission; whereas the polymers showed the emission from green to yellow–green, when R was ? CH2(CH2)5CH3 or ? CH2OCH(CH3)2. To investigate the nature of the color change, a Gaussian 03 program was used for estimation of the dihedral angles between a 5‐R‐2,1,3‐benzothiadiazole unit and a 2,7‐carbazole unit. The results showed that the different substituents at 5‐position of 2,1,3‐benzothiadiazole brought about different the dihedral angles, which gave the different conjugation levels to the polymers. Hence, the tunablity of emission color may be attributed to the different conjugation levels between 2,7‐carbazole units and 5‐R‐2,1,3‐benzothiadiazole units induced by simply changing substituent groups at 5‐position of benzothiadiazole unit. Electrochemically, the copolymers exhibited a higher oxidation potential as well as the reversible reduction behavior bearing from 2,1,3‐benzothiadiazole unit. To investigate the electroluminescent properties of the polymers, the nonoptimized devices were fabricated and the results showed that the electroluminescent emission wavelength was basically similar to that of the photoluminescent. All polymers showed good thermal stability with 5 wt % loss temperature of more than 296 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1376–1387, 2008  相似文献   

14.
In an effort to decrease the electron‐injection barrier from the anode electrode, four copoly(aryl ether)s ( P1 – P4 ), consisting of alternating isolated electron‐transporting [2,5‐diphenyl‐1,3,4‐oxadiazole for P1 and P3 and 5,5′‐diphenyl‐2,2′‐p‐(2,5‐bishexyloxyphenylene)‐bis‐1,3,4‐oxadiazole for P2 and P4 ] and emitting chromophores (1,4‐distyryl‐2,5‐dihexyloxybenzene for P1 and P2 and 1,4‐distyryl‐2,5‐dihexylbenzene for P3 and P4 ), have been synthesized by the nucleophilic displacement reaction between bisfluoride and bisphenol monomers. They are basically amorphous materials with 5% weight‐loss temperature above 400 °C. The photoluminescence spectra and quantum yields of these copolymers are dependent on the compositions of the two isolated fluorophores. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of these copolymers have been estimated from their cyclic voltammograms. All the observations directly prove that the oxidation starts at the hole‐transporting segments. The electron affinity can be enhanced by the introduction of isolated electron‐transporting segments that lead to a charge‐injection balance. Single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO glass) have been fabricated. P1 and P2 reveal blue electroluminescence, and P3 and P4 reveal purple‐blue electroluminescence. Moreover, the incorporation of bisoxadiazole units increases the electron affinity and reduces the turn‐on electric field better than one oxadiazole unit. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2765–2777, 2003  相似文献   

15.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

16.
We report the preparation of a new electroluminescent polymer by the oxidative coupling copolymerization of N‐(4‐n‐butylphenyl)phenoxazine and 9,9‐di‐n‐butylfluorene with ferric(III) chloride. The reaction yields soluble polymers with a weight‐average molecular weight as high as 9000. The reactivity has been studied with respect to the reaction time, temperature, and feed ratio of the comonomers. Under optimum conditions, a copolymer with a 50% comonomer incorporation ratio can be obtained in a 75% yield. The polymers have been characterized with differential scanning calorimetry, cyclic voltammetry, and optical spectroscopy. A simple single‐layer light‐emitting‐diode device of an indium tin oxide/polymer/Mg–Ag structure shows a luminance of 200 cd/m2 at an 18‐V operating voltage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4338–4345, 2006  相似文献   

17.
We successfully developed phosphorescent cyclometallated iridium‐containing metallopolymers, which are near‐red luminescent iridium complexes bearing phosphine‐containing copolymers used as polymer ligands, and investigated their photoluminescence and electroluminescence behavior. The phosphine copolymer ligand made from methyl methacrylate and 4‐styryldiphenylphosphine can be used as an anchor, which coordinates luminescent iridium units to form the metallopolymer easily. Organic light‐emitting diodes were fabricated from the metallopolymer and its nonpolymer analog, [IrCl(piq)2PPh3]. These complexes exhibited quite similar luminescence behavior, except for emission from the free‐phosphine‐units in the polymer side chain and their energy‐transferring properties from host to guest materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4366–4378, 2009  相似文献   

18.
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007  相似文献   

19.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

20.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号