首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The molecular configuration and crystal structure of solid polycrystalline N,N′′‐diacetylbiuret (DAB), a potential nitrogen‐rich fertilizer, have been analyzed by a combination of solid‐ and liquid‐state NMR spectroscopy, X‐ray diffraction, and DFT calculations. Initially a pure NMR study (“NMR crystallography”) was performed as available single crystals of DAB were not suitable for X‐ray diffraction. Solid‐state 13C NMR spectra revealed the unexpected existence of two polymorphic modifications (α‐ and β‐DAB) obtained from different chemical procedures. Several NMR techniques were applied for a thorough characterization of the molecular system, revealing chemical shift anisotropy (CSA) tensors of selected nuclei in the solid state, chemical shifts in the liquid state, and molecular dynamics in the solid state. Dynamic NMR spectroscopy of DAB in solution revealed exchange between two different configurations, which raised the question, is there a correlation between the two different configurations found in solution and the two polymorphic modifications found in the solid state? By using this knowledge, a new crystallization protocol was devised which led to the growth of single crystals suitable for X‐ray diffraction. The X‐ray data showed that the same symmetric configuration is present in both polymorphic modifications, but the packing patterns in the crystals are different. In both cases hydrogen bonds lead to the formation of planes of DAB molecules. Additional symmetry elements, a two‐fold screw in the case of α‐DAB and a c‐glide plane in the case of β‐DAB, lead to a more symmetric (α‐DAB) or asymmetric (β‐DAB) intermolecular hydrogen‐bonding pattern for each molecule.  相似文献   

2.
We have presented an experimental investigation of the oxygen-17 chemical shielding (CS) and electric-field-gradient (EFG) tensors for alpha-COOH groups in polycrystalline amino acid hydrochlorides. The 17O CS and EFG tensors including the relative orientations between the two NMR tensors are determined in [17O]-L-phenylalanine hydrochloride and [17O]-L-valine hydrochloride by the analysis of the 17O magic-angle-spinning (MAS) and stationary NMR spectra obtained at 9.4, 11.7, 16.4, and 21.8 T. The quadrupole coupling constants (CQ) and the span of the CS tensors are found to be 8.41-8.55 MHz and 7.35-7.41MHz, and 548-570 ppm and 225-231 ppm, for carbonyl and hydroxyl oxygen atoms, respectively. Extensive quantum chemical calculations using density functional theory (DFT) have been also carried out for a hydrogen-bonding model. It is demonstrated that the behavior of the dependence of hydrogen-bond distances on 17O NMR tensors for the halogen ions is different from those for the water molecule.  相似文献   

3.
Fumaric, malonic, maleic, and hydromuconic (HOOCCH2(CH)2CH2COOH) acids were used to prepare a series of hydrogen-bonded adducts or salts, depending on whether acid-base proton transfer takes place, with the dibase [N(muCH2CH2)3N] in various stoichiometric ratios. The resulting compounds have been investigated by using the 1H MAS, 15N, and 13C cross polarisation magic-angle spinning (CPMAS) methods and discussed in relation to X-ray diffraction studies to ascertain the nature of the O-HO, NH-O, and N+-HO- hydrogen bonds between the various species. In addition, two polymorphic forms of the malonic compound and a hydrate in the maleic case were examined. We also present the correlations between the chemical shifts of the hydrogen-bonded protons and those from the proton transfer reaction (acid-to-base) with the heavy atom distances. The dynamic behaviour in the solid-state of the [N(muCH2CH2)3N] adducts with fumaric 2:1, maleic 1:1 hydrate, and hydromuconic acids, and a malonate 2:1 polymorph adduct have been investigated by using variable-temperature 1H spin-lattice relaxation times. A substantial agreement between the activation energies obtained from fitting the T1 data and the results of potential energy barrier calculations demonstrates that the facile reorientation of the [N(muCH2CH2)3N] molecule occurs in several of the adducts.  相似文献   

4.
5.
We have presented a systematic experimental investigation of carboxyl oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in crystalline amino acids. Three 17O-enriched amino acids were prepared: L-aspartic acid, L-threonine, and L-tyrosine. Analysis of two-dimensional 17O multiple-quantum magic-angle spinning (MQMAS), MAS, and stationary NMR spectra yields the 17O CS, EFG tensors and the relative orientations between the two tensors for the amino acids. The values of quadrupolar coupling constants (CQ) are found to be in the range of 6.70-7.60 MHz. The values of deltaiso lie in the range of 268-292 ppm, while those of the delta11 and delta22 components vary from 428 to 502 ppm, and from 303 to 338 ppm, respectively. There is a significant correlation between the magnitudes of delta22 components and C--O bond lengths. Since C--O bond length may be related to hydrogen-bonding environments, solid-state 17O NMR has significant potential to provide insights into important aspects of hydrogen bonds in biological systems.  相似文献   

6.
The DABCO-catalyzed (DABCO = 1,4-diazabicyclo[2.2.2]octane) reaction of but-3-yn-2-one and methyl propiolate with salicyl N-tosylimines yields highly functionalized chromenes and has been thoroughly investigated; the rational mechanism for the reaction has been demonstrated on the basis of 1H NMR spectroscopic investigation.  相似文献   

7.
PCBM or [6,6]-phenyl-C(61)-butyric acid methyl ester is nowadays still one of the most successful electron acceptors for plastic bulk heterojunction (BHJ) photovoltaic devices. In this study, a set of complementary techniques, i.e. solid-state NMR, XRD and DSC, is proposed as a fast and sensitive tool to screen the morphology of PCBM specimens with different preparation histories. Based on proton NMR relaxation decay time values, an interval can be derived that situates the average crystal dimensions and which can further be refined on the basis of XRD patterns and DSC thermograms.  相似文献   

8.
New styryl dyes of the pyridine and benzothiazole series were synthesized with the aim of investigating the solid-state [2+2] autophotocycloaddition (PCA) reaction. The 1H NMR spectroscopy showed that for most of the compounds under study, the visible light irradiation of thin polycrystalline films of the dyes affords cyclobutane derivatives. The rate of the photoreaction depends on the structure of the dye and is higher for compounds, which contain a short N-substituent in the heterocyclic moiety and have strong absorption in the visible region. Dyes bearing electron-releasing substituents in the benzene ring undergo the stereospecific PCA in the syn-head-to-tail dimeric pair to give the only rctt isomer of cyclobutane derivatives. Electron-withdrawing and bulky substituents in the benzene fragment of styryl dyes extend the range of the mutual orientations of the molecules in the dimeric pairs, resulting in the formation of two or even four isomeric cyclobutanes in the PCA reactions. The structures of some dyes were established by X-ray diffraction. In the overwhelming majority of the structures, one of two packing modes, either syn-head-to-tail or syn-head-to-head, with extensive stacking interactions is observed. A rare example of the anti-head-to-head stacking mode was found for the dicationic dye containing the bulky N+(Et)Me2 substituent in the benzene ring. The syn-head-to-tail and anti-head-to-head stacking modes can facilitate the PCA reaction due to the close spatial proximity of the ethylenic bonds and their parallel orientation in the dimeric pairs of the dye molecules. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1797–1819, September, 2007.  相似文献   

9.
Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using 11B solid‐state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic‐angle spinning samples, the 11B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the 11B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X‐ray crystallographic structures are reported. Calculations of the 11B NMR parameters are performed using cluster model and periodic gauge‐including projector‐augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon‐13 solid‐state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect 13C‐11B spin‐spin (J) coupling constants are also measured experimentally and compared with calculated values. The 11B/10B isotope effect on the 13C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X‐ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The tautomeric structure of 4‐trifluoromethyl[b]benzo‐1,4‐diazepine system in solution has been evaluated by means of the calculation of 15N NMR chemical shifts of individual tautomers in comparison with the averaged experimental shifts to show that the enamine–imine equilibrium is entirely shifted toward the imine form. The adequacy of the theoretical level used for the computation of 15N NMR chemical shifts in this case has been verified based on the benchmark calculations in the series of the push–pull and captodative enamines together with related azomethynes, which demonstrated a good to excellent agreement with experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
An iminoalane‐silazane polymer (ISP), an Al? Si? N? C precursor, has been synthesized via Pt‐catalyzed hydrosilylation between poly(allyl iminoalane‐co‐ethyl iminoalane) {[HAlN(allyl)]m[HAlN (ethyl)]n, AE‐alane} and 1,3,5,7‐tetrahydro‐1,3,5,7‐tetramethylcyclotetrasilazane {[Me(H)SiNH]4, TCS}. The IR and 1H NMR spectra of ISP indicate that the relative amounts of the allyl groups decrease slightly in comparison with those of AE‐alane, suggesting that hydrosilylation occurs partially. TG analysis up to 900 °C reveals that the ceramic yield of ISP is 83.1 mass%. It is suggested that the high ceramic yield can be ascribed to cross‐linking reactions occurring during pyrolysis. Possible reactions during pyrolysis are hydrosilylation, polymerization of the C?C bonds in the allyl groups and dehydrocoupling among the SiH groups, NH groups and AlH groups in ISP. The pyrolyzed residue at 1700 °C contains crystalline AlN, 2H‐SiC, β‐SiC and β‐Si3N4 and amorphous carbon, as revealed by solid‐state nuclear magnetic resonance (NMR) spectroscopy, Raman spectroscopy and X‐ray diffraction (XRD) analysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号