首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
I study the structure of Pitteri neighborhoods centered at hexagonal close-packed configurations of monatomic crystals using my previously introduced X-ray theory. The theory is generalized to cover some effects of magnetism. I give an alternative formulation of X-ray theory that makes comparison to conventional continuum theories more transparent. I study the influence of lattice symmetry on the constitutive relations of nonlinear thermoelasticity and thermomagnetoelasticity, consistent with the existence of a Pitteri neighborhood.  相似文献   

2.
一维半无限压电杆的广义的热冲击问题   总被引:1,自引:2,他引:1  
采用具有两个热松驰时间的G-L广义热弹性理论,研究了一维无限无限长杆在其端部受到热冲击时的边值问题,借助于拉普拉斯正、反变换技术,在所考虑时间非常短的情况下,对问题进行了求解。得到了位移及温度分布的近似妥析角,发现位移及温度分布中分别存在两上阶跃点,并通过数值计算,把温度的分布规律用图形反映了出来,从温度的分布图上可以看出,当任何x的值大于第二个阶跃点的位置值时,温度值都是零,也即在当前所绘定的时刻,热以波的形式沿压电杆仅传播到第二阶跃点的位置,而在第二个阶跃点之后,压电杆上的温度分布保持初始温度;定不同时刻,热波波前的位置也将相应的在压电杆上移动,也即热波波前在压电杆上的位置随考虑时刻不同而不同,这与经典的热传导是完全不同的,它说明热是以波的形式以有限的速度,而不是以无限的速度在介质中进行传播的。  相似文献   

3.
广义热弹性问题研究进展   总被引:6,自引:0,他引:6  
本文总结了广义热弹性问题最近10年的研究进展, 包括不同类型广义热弹耦合问题的研究、考虑磁\!--\!电多场耦合的广义电磁热弹耦合问题研究以及计及扩散效应和黏弹性效应的广义热弹性理论的发展、广义热弹性问题基本求解方法等, 通过总结, 使读者对广义热弹性问题的研究现状及发展趋势有较全面的认识, 帮助研究人员进一步开展广义热弹性问题更高层次的研究.   相似文献   

4.
In this work, a new theory of thermoelasticity is derived using the methodology of fractional calculus. The theories of coupled thermoelasticity and of generalized thermoelasticity with one relaxation time follow as limit cases. A uniqueness theorem for this model is proved. A variational principle and a reciprocity theorem are derived.  相似文献   

5.
In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in the context of the two-temperature generalized thermoelasticity theory [Youssef, H., 2005a. The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, J. Appl. Math. Mech., 26(4), 4827; Youssef, H., 2005b. Theory of two-temperature generalized thermoelasticity, IMA J. Appl. Math., 1–8]. The medium is assumed initially quiescent. Laplace transform and state space techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to thermal shock and traction free. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the two-temperature parameter.  相似文献   

6.
The asymptotic solution of the three-dimensional dynamic of coupled thermoelasticity problem (with the mutual influence of the strain and temperature fields taken into account) for an isotropic rectangular plate is used to perform a comparative analysis of the results obtained according to this theory and the theory of temperature stresses. The parameters whose values affect the applicability of these theories and of the applied theory used to solve quasistatic problems of thermoelasticity are obtained.  相似文献   

7.
IntroductionSomeauthorsstudiedthecoupledfieldproblemsformicropolarcontinua .Especially ,W .Nowackipublishedaseriesofabout 4 0scientificpapersdealingwiththemicropolarthermoelasticityaswellastheproblemsofdistortion ,thermodiffusion ,thermopiezoelectricityandm…  相似文献   

8.
Thermoelasticity without energy dissipation   总被引:11,自引:0,他引:11  
This paper deals with thermoelastic material behavior without energy dissipation; it deals with both nonlinear and linear theories, although emphasis is placed on the latter. In particular, the linearized theory of thermoelasticity discussed possesses the following properties: (a) the heat flow, in contrast to that in classical thermoelasticity characterized by the Fourier law, does not involve energy dissipation; (b) a constitutive equation for an entropy flux vector is determined by the same potential function which also determines the stress; and (c) it permits the transmission of heat as thermal waves at finite speed. Also, a general uniqueness theorem is proved which is appropriate for linear thermoelasticity without energy dissipation.  相似文献   

9.
In this paper, the radial deformation and the corresponding stresses in a homogeneous annular fin for an isotropic material has been investigated. A numerical technique is proposed to obtain the solution of the transient coupled thermoelasticity in an annular fin cylinder with it’s base suddenly subject to a heat flux of a decayed exponential function of time. The system of fundamental equations is solved by using an implicit finite-difference method. The present method is a second-order accurate in time and space and unconditionally stable. A numerical method is used to calculate the temperature, displacement and the components of stresses with time t and through the radial of the annular fin cylinder. The results indicate that the effect of coupled thermoelasticity on temperature, stresses and displacement is very pronounced. Comparison is made with the results predicted by the theory of thermoelasticity in the absence of coupled thermoelasticity.  相似文献   

10.
In this paper, the induced temperature, displacement, and stress fields in an infinite transversely isotropic unbounded medium with cylindrical cavity due to a moving heat source and harmonically varying heat are investigated. This problem is solved in the context of the linear theory of generalized thermoelasticity with dual phase lag model. The governing equations are expressed in Laplace transform domain. Based on Fourier series expansion technique the inversion of Laplace transform is done numerically. The numerical estimates of the displacement, temperature and stress are obtained and presented graphically. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and thermoelasticity without energy dissipation can extracted as special cases. Some comparisons have been shown in figures to present the effect of the heat source, dual phase lags parameters and the angular frequency of thermal vibration on all the studied fields.  相似文献   

11.
The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.  相似文献   

12.
In the present work, the dynamic problem of coupled thermoelasticity with the most general type of nonuniformity and anisotropy is analyzed. The hyperbolic nature of the system of equations of coupled thermoelasticity is demonstrated, effects of extinction of separate waves by superposition of elastic and thermoelastic wave fronts are investigated, and the interrelationship of different orders of discontinuity of stresses, displacements, and temperature is determined. The case of the uncoupled problem of thermoelasticity is especially analyzed. Sufficient conditions are obtained for the dynamic density for wave processes in thermoelasticity, previously investigated for boundary value problems of hyperbolic systems of second order differential equations [1], andelastic stress waves [2] are obtained. The generally accepted system of tensor notation for the theory of thermoelasticity is used [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 154–163, May–June, 1981.  相似文献   

13.
A first strain gradient theory of thermoelasticity is formulated employing a method due to Mindlin. The basic equations for linear dynamical thermoelasticity for infinitesimal motion are obtained and discussed. Wave propagation is considered and an example of a spherical thermal inclusion in an infinite body is solved and the corresponding displacement field and the component of stresses, couple stresses, and double stresses are obtained.  相似文献   

14.
A model of the equations of a generalized thermoelasticity (GT) with relaxation times for a saturated porous medium is given in this article. The formulation can be applied to the GT theories: Lord–Shulman theory, Green–Lindsay theory, and Coupled theory for the porous medium. A two-dimensional thermoelastic problem that is subjected to a time-dependent thermal/mechanical source is investigated with the model of the generalized porous thermoelasticity. By using the Laplace transform and the Fourier transform technique, solutions for the displacement, temperature, pore pressure, and stresses are obtained with a semi-analytical approach in the transform domain. Numerical results are also performed for portraying the nature of variations of the field variables. In addition, comparisons are presented with the corresponding four theories.  相似文献   

15.
The influence of second-order effects on the propagation of a weak dilatational stress pulse in a heat-conducting elastic material is investigated. As a first approximation, the problem is studied using the linear theory of thermoelasticity. It is found that thermal diffusion dominates the wave motion, and a time is reached when second-order terms must be considered. The wave motion is then found to be isentropic and the shock structure is governed by Burgers's equation. Solutions to this equation are obtained and the influence of heat-conduction on pulse propagation in elastic materials is discussed, with some numerical results being presented for copper. Also, previous work in linear thermoelasticity theory is clarified and related to known results in linear and nonlinear elastodynamics.  相似文献   

16.
In this note we prove the impossibility of the localization in time of the solutions of the linear thermoelasticity with voids. This means that the only solution for this problem that vanishes after a finite time is the null solution. From a thermomechanical point of view, this result says that the combination of the thermal and porous dissipation in the linear theory is not sufficiently strong to guarantee that the thermomechanical deformations will vanish after a finite time. The main idea to prove this result is to show the uniqueness of solutions for the backward in time problem.  相似文献   

17.
This paper is concerned with determining the elastodynamic response of a plane strain medium containing a central crack deformed by the action of suddenly applied thermal and/or mechanical disturbances when the assumptions of the general theory of coupled thermoelasticity are assumed. Integral transform solution is employed to reduce the governing equations into integral equations of Fredholm type. A numerical inversion technique is used to compute the dynamic stress-intensity factors when the faces of the crack are subjected to constant heat flux and/or mechanical loading. Attention is focused on the overshoot in the stress-intensity factor and its time interval for non-stationary temperature fields, and to what degree it is influenced by the mutual dependence of the temperature and displacement fields inherent in the coupled theory of thermoelasticity.  相似文献   

18.
The space-time continuum (4D-medium) is considered, and a generalized model of reversible dynamic thermoelasticity is constructed as a theory of elasticity of an ideal (defect-free) nonsymmetric 4D-medium that is transversally-isotropic with respect to the time coordinate. The definitions of stresses and strains for the space-time continuum are introduced. The constitutive equations of the medium model relating the components of nonsymmetric stress and distortion 4D-tensors are stated. Physical interpretations of all tensor components of the thermomechanical properties are given. The Lagrangian of the generalized model of coupled dynamic thermoelasticity is presented, and the Euler equations are analyzed. It is shown that the three Euler equations are generalized equations of motion of the dynamic classical thermoelasticity, and the last, fourth, equation is a generalized heat equation which allows one to predict the wave properties of heat. An energy-consistent version of thermoelasticity is constructed where the Duhamel-Neumann and Maxwell-Cattaneo laws (a nonclassical generalization of the Fourier law for the heat flow) are direct consequences of the constitutive equations.  相似文献   

19.
An integral formula is used to average a coupled problem of thermoelasticity for a nonuniform rod of variable cross section. Effective characteristics are found. It is shown that, in addition to the expected effective coefficients, there appear five independent coefficients characterizing the temperature change rate effect on the stresses in the rod, on the longitudinal heat flux, and on the entropy distribution along the length of the rod. A feature of these new coefficients is that they become equal to zero in the case of a uniform rod. The homogenization of the thermoelasticity equations for nonuniform rods allows one to propose a new theory of heat conduction in rods. This new theory differs from the classical one by the fact that some new terms are added to the Duhamel–Neumann law, to the Fourier heat conduction law, and to the entropy expression. These new terms are proportional to the temperature change rate with time. It is also shown that, in the new theory of heat conduction, the propagation velocity of harmonic heat perturbations is dependent on the oscillation frequency and is finite when the frequency tends to infinity.  相似文献   

20.
This article deals with the various heat source responses in a transversely isotropic hollow cylinder under the purview of three-phase-lag (TPL) generalized thermoelasticity theory. In presence of magnetic field and due to the rotating behavior of the cylinder, the governing equations are redefined for generalized thermoelasticity with thermal time delay. In order to obtain the stress, displacement and temperature field, the field functions are expressed in terms of modified Bessel functions in Laplace transformed domain. When the outer radius of hollow cylinder tends to infinity, the corresponding results are discussed. Finally an appropriate Laplace transform inversion technique is adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号