首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge reduction electrospray mass spectrometry (CREMS) reduces the charge states of electrospray-generated ions, which concentrates the ions from a protein into fewer peaks spread over a larger m/z range, thereby increasing peak separation and decreasing spectral congestion. An optimized design for a CREMS source is described that provides an order-of-magnitude increase in sensitivity compared to previous designs and provides control over the extent of charge reduction. Either a corona discharge or an alpha-particle source was employed to generate anions that abstract protons from electrosprayed protein cations. These desired ion/ion proton transfer reactions predominated, but some oxidation and ion-attachment reactions also occurred, leading to new peaks or mass-shifted broader peaks while decreasing signal intensity. The species producing these deleterious side-reactions were identified, and conditions were found that prevented their formation. Spectrometer m/z biases were examined because of their effect upon the signal intensity of higher m/z charge-reduced protein ions. The utility of this atmospheric pressure CREMS was demonstrated using a cell lysate fraction from E. coli. The spectral simplification afforded by CREMS reveals more proteins than are observed without charge reduction.  相似文献   

2.
Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.  相似文献   

3.
The dissociation of protein ions (5-30 kDa) as a function of charge state has been explored in order to suggest the optimal charge state range for top-down sequencing. Proteins were generated under denaturing conditions and their charge states were modified via ion/ion proton transfer reactions prior to dissociation. Electron transfer dissociation (ETD) data suggested optimal sequence coverage for charge states in the m/z range from 700 to 950 while limited sequence coverage was noted when the precursor m/z was above 1000. Sequence coverage from ETD data was found to be dependent on protein size, with smaller proteins having better sequence coverage. An observed depletion in sequence-related information was mainly attributed to limited instrument (ion trap) performance (m/z range and resolution). For a combined ETD/collision-induced dissociation (CID) approach it is difficult to propose an optimal m/z range since good sequence coverage for CID is at intermediate charge states and the optimal m/z range increases with protein size. When only one charge state can be analysed in a combined ETD/CID approach, a range around 950 m/z is suggested as a starting point. Alternatively, two charge states should be explored, each optimal for either ETD or CID. Overall, these suggestions should be useful to achieve enhanced characterisation of smaller proteins/large protein fragments (generated from denaturing solutions) in minimal analysis times.  相似文献   

4.
Highly complex protein mixtures can be analyzed after proteolysis using liquid chromatography/mass spectrometry (LC/MS). In an LC/MS run, intense peptide ions originating from high-abundance proteins are preferentially analyzed using tandem mass spectrometry (MS(2)), so obtaining the MS(2) spectra of peptide ions from low-abundance proteins is difficult even if such ions are detected. Furthermore, the MS(2) spectra may produce insufficient information to identify the peptides or proteins. To solve these problems, we have developed a real-time optimization technique for MS(2), called the Information-Based-Acquisition (IBA) system. In a preliminary LC/MS run, a few of the most intense ions detected in every MS spectrum are selected as precursors for MS(2) and their masses, charge states and retention times are automatically registered in an internal database. In the next run, a sample similar to that used in the first run is analyzed using database searching. Then, the ions registered in the database are excluded from the precursor ion selection to avoid duplicate MS(2) analyses. Furthermore, real-time de novo sequencing is performed just after obtaining the MS(2) spectrum, and an MS(3) spectrum is obtained for accurate peptide identification when the number of interpreted amino acids in the MS(2) spectrum is less than five. We applied the IBA system to a yeast cell lysate which is a typical crude sample, using a nanoLC/ion-trap time-of flight (IT/TOF) mass spectrometer, repeating the same LC/MS run five times. The obtained MS(2) and MS(3) spectra were analyzed by applying the Mascot (Matrix Science, Boston, MA, USA) search engine to identify proteins from the sequence database. The total number of identified proteins in five LC/MS runs was three times higher than that in the first run and the ion scores for peptide identification also significantly increased, by about 70%, when the MS(3) spectra were used, combined with the MS(2) spectra, before being subjected to Mascot analysis.  相似文献   

5.
The combination of deprotonation (via ion/molecule and ion/ion reactions) and low-energy collision-induced dissociation (CID) has been explored for the enhanced characterisation of tryptic peptides via access to different precursor charge states. This approach allows instant access to fragmentation properties of singly and doubly protonated precursors (arising from the availability of mobile protons) in a single experiment. Considering both charge states extended our base of structurally informative data (in comparison with considering just a single charge state) due to generation of additional sequence ions and by obtaining supplementary structural information derived from selective cleavages. Roughly 37% of combined data sets (CID spectra of doubly and singly charged precursor) showed a greater database identification confidence than each set alone. Moreover, comparison between a number of sequence ions of the singly charged precursor and the doubly charged precursor provided a mean of distinguishing the two classes of tryptic peptides (arginine or lysine containing).  相似文献   

6.
Technological and scientific advances over the past decade have enabled protein identification and characterization strategies to be developed that are based on subjecting intact protein ions and large protein fragments directly to tandem mass spectrometry. These approaches are referred to collectively as 'top down' to contrast them with 'bottom up' approaches whereby protein identification is based on mass spectrometric analysis of peptides derived from proteolytic digestion, usually with trypsin. A key step in enabling top down approaches has been the ability to assign tandem mass spectrometer product ion identities, which can be done either via high resolving power or through product ion charge state manipulation. The ability to determine product ion charge states has permitted studies of the reactions, including dissociation, ion-molecule reactions, ion-electron reactions and ion-ion reactions of high-mass, multiply charged protein ions. Electrospray ionization combined with high magnetic field strength Fourier transform ion cyclotron resonance has proven to be particularly powerful for detailed protein characterization owing to its high mass resolution and mass accuracy and its ability to effect electron capture-induced dissociation. Other types of tandem mass spectrometers are also beginning to find increasing use in top down protein identification/characterization studies. Charge state manipulation via ion-ion reactions in electrodynamic ion traps, for example, enables top down strategies to be considered using instruments with relatively modest mass resolution capabilities. Precursor ion charge state manipulation techniques have also recently been demonstrated to be capable of concentrating and charge-state purifying proteins in the gas phase. Advances in technologies applied to the structural analysis of whole protein ions and in understanding their reactions, such as those described here, are providing new options for the study of complex protein mixtures.  相似文献   

7.
The synthesis of protein hetero-complex ions via ion-ion reactions in the gas phase is demonstrated in a quadrupole ion trap. Bovine cytochrome c cations and bovine ubiquitin anions are used as reactant species in the stepwise construction of complexes containing as many as six protein sub-units. For any set of reactants, a series of competitive and consecutive reactions is possible. The yield of complex ions for any given sequence of reactions is primarily limited by the presence of competitive reactions. Proton transfer represents the most important competitive reaction that adversely affects protein complex synthesis. In the present data, proton transfer takes place most extensively in the first step of complex synthesis, when single protein sub-units are subjected to reaction with one another. Proton transfer is found to be less extensive when one of the reactants is a protein complex. The generation of hexameric hetero-complexes containing two cytochrome c molecules and four ubiquitin molecules is demonstrated with two different synthesis approaches. The first involved the initial reaction of several charge states of cytochrome c and several charges states of ubiquitin. The sequence of reactions in this example illustrates the array of possible competitive and consecutive reactions associated with even a relatively simple set of multiply charged reactants. The second approach involved the initial reaction of the 9(+) charge state of cytochrome c and the 5(-) charge state of ubiquitin. The latter approach highlights the utility of the multi-stage mass spectrometric (MS(n)) capabilities of the ion trap in defining reactant ion identities (i.e. charge states and polarities) so that synthesis reactions can be directed along a particular set of pathways.  相似文献   

8.
Electrospray ionization (ESI) of peptides and proteins produces a series of multiply charged ions with a mass/charge (m/z) ratio between 500 and 2000. The resulting mass spectra are crowded by these multiple charge values for each molecular mass and an isotopic cluster for each nominal m/z value. Here, we report a new algorithm simultaneously to deconvolute and deisotope ESI mass spectra from complex peptide samples based on their mass-dependent isotopic mean pattern. All signals corresponding to one peptide in the sample were reduced to one singly charged monoisotopic peak, thereby significantly reducing the number of signals, increasing the signal intensity and improving the signal-to-noise ratio. The mass list produced could be used directly for database searching. The developed algorithm also simplified interpretation of fragment ion spectra of multiply charged parent ions.  相似文献   

9.
We report a simple approach for determining ion score cutoffs that permit the confident identification of ubiquitinated proteins by tandem mass spectrometry (MS/MS). Initial experiments involving the analysis of gel bands containing multi-Ubiquitin chains with quadrupole time-of-flight and quadrupole ion trap mass spectrometers revealed that standard ion score cutoffs used for database searching were not sufficiently stringent. We also found that false positive and false negative rates (FPR and FNR) varied significantly depending on the cutoff scores used and that appropriate cutoffs could only be determined following a systematic evaluation of false positive rates. When standard cutoff scores were used for the analysis of complex mixtures of ubiquitinated proteins, unacceptably high FPR were observed. Finally, we found that FPR for ubiquitinated proteins are affected by the size of the protein database that is searched. These observations may be applicable for the study of other post-translational modifications.  相似文献   

10.
N-Terminally acetylated thymosin beta4, a species implicated for use as a cancer biomarker, was identified in a human lung cancer cell line using ion trap tandem mass spectrometry at the whole protein level. Ion-ion proton transfer reactions were used for parent ion concentration/manipulation and to simplify interpretation of product ion spectra. Dissociation data for the +6 to +3 charge states are reported. As is usually the case, structural information available from the ion trap collisional activation of the protein is sensitive to parent ion charge state. Each parent ion charge state selected, however, provided sufficient information to make a confident identification. Furthermore, each charge state provided relatively rich fragmentation. Therefore, any of the charge states can be used to detect with high specificity thymosin beta(4) in a complex protein mixture. There are advantages associated with the rapid detection of protein biomarkers at the whole protein level, as opposed to the peptide level following protein digestion, particularly for relatively small protein and polypeptide biomarkers. Having identified and characterized the protein, product ion spectra obtained directly, without recourse to ion-ion proton transfer reactions, can be used for library matching. However, ion-ion proton transfer reactions for parent ion concentration and charge state purification are advantageous in addressing relatively complex mixtures.  相似文献   

11.
A novel method for separating ions according to their charge state using a quadrupole time-of-flight mass spectrometer is presented. The benefits of charge state separation are particularly apparent in protein identification applications at low femtomole concentration levels, where in conventional TOF MS spectra peptide ions are often lost in a sea of chemical noise. When doubly and triply charged tryptic peptide ions need to be filtered from singly charged background ions, the latter are suppressed by two to three orders of magnitude, while from 10-50% of multiply charged ions remain. The suppression of chemical noise reduces the need for chromatography and can make this experimental approach the electrospray equivalent of conventional MALDI peptide maps. If unambiguous identification cannot be achieved, MS/MS experiments are performed on the precursor ions identified through charge separation, while the previously described Q2-trapping duty cycle enhancement is tuned for approximately 1.4 of the precursor m/z to enhance intensities of ions with m/z values above that of the precursor. The resulting product ion spectra contain few fragments of impurities and provide quick and unambiguous identification through database search. The multiple charge separation technique requires minimal tuning and may become a useful tool for analysis of complex mixtures.  相似文献   

12.
Traditionally, the screening of unknown pesticides in food has been accomplished by GC/MS methods using conventional library searching routines. However, many of the new polar and thermally labile pesticides and their degradates are more readily and easily analyzed by LC/MS methods and no searchable libraries currently exist (with the exception of some user libraries, which are limited). Therefore, there is a need for LC/MS approaches to detect unknown non-target pesticides in food. This report develops an identification scheme using a combination of LC/MS time-of-flight (accurate mass) and LC/MS ion trap MS (MS/MS) with searching of empirical formulas generated through accurate mass and a ChemIndex database or Merck Index database. The approach is different than conventional library searching of fragment ions. The concept here consists of four parts. First is the initial detection of a possible unknown pesticide in actual market-place vegetable extracts (tomato skins) using accurate mass and generating empirical formulas. Second is searching either the Merck Index database on CD (10,000 compounds) or the ChemIndex (77,000 compounds) for possible structures. Third is MS/MS of the unknown pesticide in the tomato-skin extract followed by fragment ion identification using chemical drawing software and comparison with accurate-mass ion fragments. Fourth is the verification with authentic standards, if available. Three examples of unknown, non-target pesticides are shown using a tomato-skin extract from an actual market place sample. Limitations of the approach are discussed including the use of A + 2 isotope signatures, extended databases, lack of authentic standards, and natural product unknowns in food extracts.  相似文献   

13.
Approaching complete peroxisome characterization by gas-phase fractionation   总被引:7,自引:0,他引:7  
We examined the utility of gas-phase fractionation (GPF) in the m/z dimension to increase proteome coverage and reproducibility of peptide ion selection by direct microliquid chromatography/electrospray ionization-tandem mass spectrometry (microLC/ESI-MS/MS) analysis of the peptides produced by proteolytic digestion of unfractionated proteins from a yeast whole-cell lysate and in a peroxisomal membrane protein fraction derived from isolated yeast peroxisomes. We also investigated GPF in the relative ion intensity dimension and propose denoting the two types of GPF as GPF(m/z) and GPF(RI). Comparison of results of direct nuLC/ESI-MS/MS analysis of the unfractionated mixture of peptides from proteolysis of a yeast whole cell lysate by DD ion selection from 400-1800 m/z in triplicate and GPF(m/z) from 400-800, 800-1200 and 1200-1800 produced the following results: (i) 1.3 x more proteins were identified by GPF(m/z) for an equal amount of effort (i.e., 3 microLC/ESI-MS/MS) and (ii) proteins identified by GPF(m/z) had a lower average codon bias value. Use of GPF(RI) identified more proteins per m/z unit scanned than GPF(m/z) or triplicate analysis over a wide m/z range. After tryptic digestion of all the proteins from a discontinuous Nycodenz gradient fraction known to be enriched with yeast peroxisomal membrane proteins we detected 93% (38/41) of known peroxisomal proteins using GPF(m/z), but only 73% using a standard wide m/z range survey scan.  相似文献   

14.
A simple ion trap/ion mobility/time-of-flight (TOF) mass spectrometer has been coupled with nanoflow liquid chromatography to examine the feasibility of analyzing mixtures of intact proteins. In this approach proteins are separated using reversed-phase chromatography. As components elute from the column, they are electrosprayed into the gas phase and separated again in a drift tube prior to being dispersed and analyzed in a TOF mass spectrometer. The mobilities of ions through a buffer gas depend upon their collision cross sections and charge states; separation based on these gas-phase parameters provides a new means of simplifying mass spectra and characterizing mixtures. Additionally it is possible to induce dissociation at the exit of the drift tube and examine the fragmentation patterns of specific protein ion charge states and conformations. The approach is demonstrated by examining a simple three-component mixture containing ubiquitin, cytochrome c, and myoglobin and several larger prepared protein mixtures. The potential of this approach for use in proteomic applications is considered.  相似文献   

15.
The ion observed at m/z 145 when product ion spectra of iodobenzoate anions are recorded using ion-trap mass spectrometers corresponds to the adduct ion [I(H(2)O)](-). The elements of water required for the formation of this adduct do not originate from the precursor ion but from traces of moisture present in the helium buffer gas. A collision-induced decomposition (CID) spectrum recorded from the [M-H](-) ion (m/z 251) derived from 3-iodo[2,4,5,6-(2)H(4)]benzoic acid also showed an ion at m/z 145. This observation confirmed that the m/z 145 is not a product ion resulting from a direct neutral loss from the carboxylate anion. (79)Bromobenzoate anions produce similar results showing an ion at m/z 97 for [(79)Br(H(2)O)](-). The ion-molecule reaction observed here is unique to ion-trap mass spectrometers since a corresponding ion was not observed under our experimental conditions in spectra recorded with in-space tandem mass spectrometers such as triple quadrupole or quadrupole time-of-flight instruments.  相似文献   

16.
The application of electron transfer and dipolar direct current induced collisional activation (ET‐DDC) for enhanced sequence coverage of peptide/protein cations is described. A DDC potential is applied across one pair of opposing rods in the high‐pressure collision cell of a hybrid quadrupole/time‐of‐flight tandem mass spectrometer (QqTOF) to induce collisional activation, in conjunction with electron transfer reactions. As a broadband technique, DDC can be employed for the simultaneous collisional activation of all the first‐generation charge‐reduced precursor ions (eg, electron transfer no‐dissociation or ETnoD products) from electron transfer reactions over a relatively broad mass‐to‐charge range. A systematic study of ET‐DDC induced collision activation on peptide/protein cations revealed an increase in the variety (and abundances) of sequence informative fragment ions, mainly c‐ and z‐type fragment ions, relative to products derived directly via electron transfer dissociation (ETD). Compared with ETD, which has low dissociation efficiency for low‐charge‐state precursor ions, ET‐DDC also showed marked improvement, providing a sequence coverage of 80% to 85% for all the charge states of ubiquitin. Overall, this method provides a simple means for the broadband collisional activation of ETnoD ions in the same collision cell in which they are generated for improved structural characterization of polypeptide and protein cations subjected to ETD.  相似文献   

17.
Combining source collision-induced dissociation (CID) and tandem mass spectral acquisition in a pseudo-MS(3) experiment using a linear ion trap results in a highly selective and sensitive approach to identifying glycopeptide elution from a protein digest. The increased sensitivity is partially attributed to the nonselective nature of source CID, which allows simultaneous activation of all charge states and coeluting glycoforms generating greater ion abundance for the mass-to-charge (m/z) 204 and/or 366 oxonium ions. Unlike source CID alone, a pseudo-MS(3) approach adds selectivity while improving sensitivity by eliminating chemical noise during the tandem mass spectral acquisition of the oxonium ions in the linear ion trap. Performing the experiments in the hybrid linear ion trap/Fourier transform-ion cyclotron resonance (FT-ICR) enables subsequent high-resolution/high-mass accuracy full-scan mass spectra (MS) and parallel acquisition of MS/MS in the linear ion trap to be completed in 2 s directly following the pseudo-MS(3) scan to collate identification and characterization of glycopeptides in one experimental scan cycle. Analysis of bovine fetuin digest using the combined pseudo-MS(3), high-resolution MS, and data-dependent MS/MS events resulted in identification of four N-linked and two O-linked glycopeptides without enzymatic cleavage of the sugar moiety or release of the sialic acids before analysis. In addition, over 95% of the total protein sequence was identified in one analytical run.  相似文献   

18.
The [M + 20H](20+)-[M + 12H](12+) charge states of native and reduced porcine elastase, a 25.9 kDa serine protease, were subjected to collisional activation in a quadrupole ion trap. For most charge states, ion parking was used to increase the number of parent ions over that yielded directly by electrospray. Ion-ion proton transfer reactions were used to reduce product ion charge states largely to +1 to simplify spectral interpretation. Both forms of the protein show charge state dependent fragmentation behavior. The native protein, which contains four disulfide linkages, shows almost no evidence for fragmentation within the regions of the protein linked by disulfide bonds. However, at the lowest charge states studied, evidence for cleavage of a least one of the disulfide bonds was evident in the appearance of a c-type ion. The highest charge states of native elastase showed several prominent cleavages C-terminal to valine residues. As the charge state decreased, however, preferential cleavages at acidic amino acid residues became important. The reduced form of the protein did not show particularly prominent cleavages at valine residues. However, many of the same preferential cleavages at acidic amino acid residues noted for the native protein were also observed in the same charge states of the reduced protein. The reduced protein also showed additional cleavages from regions of the protein that are ordinarily protected by disulfide linkages in the native form.  相似文献   

19.
A new algorithm has been designed and tested to identify protein, or any other macromolecular, complexes that have been widely reported in mass spectral data. The program takes advantage of the appearance of multiply charged ions that are common to both electrospray ionization and, to a lesser extent, matrix-assisted laser desorption/ionization (MALDI) mass spectra. The algorithm, known as COMPLX for the COMposition of Protein-Ligand compleXes, is capable of identifying complexes for any protein or macromolecule with a binding partner of molecular mass up to 100 000 Da. It does so by identifying ion pairs present in a mass spectrum that, when they share a common charge, have an m/z value difference that is an integer fraction of a ligand or binding partner molecular mass. Several additional criteria must be met in order for the result to be ranked in the output file including that all m/z values for ions of the protein or complex have progressively lower values as their assigned charge increases, the difference between the m/z values for adjacent charge states (z, z + 1) decrease as the assigned charge state increases, and the ratio of any two m/z values assigned to a protein or complex is equal to the inverse ratio of their charge. The entries that satisfy these criteria are then ranked according to the appearance of ions in the mass spectrum associated with the binding partner, the length of a continuous series of charges across any set of ions for a protein and complex and the lowest error recorded for the molecular mass of the ligand or binding partner. A diverse range of hypothetical and experimental mass spectral data were used to implement and test the program, including those recorded for antibody-peptide, protein-peptide and protein-heme complexes. Spectra of increasing complexity, in terms of the number of ions input, were also successfully analysed in which the number of input m/z values far exceeds the few associated with a macromolecular complex. Thus the program will be of value in a future goal of proteomics, where mass spectrometry already plays a central role, for the direct analysis of protein and other associations within biological extracts.  相似文献   

20.
Targeted tandem mass spectrometry (MS/MS) is an attractive proteomic approach that allows selective identification of peptides exhibiting abundance differences, e.g., between culture conditions and/or diseased states. Herein, we report on a targeted LC-MS/MS capability realized with a hybrid quadrupole-7 tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer that provides data-dependent ion selection, accumulation, and dissociation external to the ICR trap, and a control software that directs intelligent MS/MS target selection based on LC elution time and m/z ratio. We show that the continuous on-the-fly alignment of the LC elution time during the targeted LC-MS/MS experiment, combined with the high mass resolution of FTICR MS, is crucial for accurate selection of targets, whereas high mass measurement accuracy MS/MS data facilitate unambiguous peptide identifications. Identification of a subset of differentially abundant proteins from Shewanella oneidensis grown under suboxic versus aerobic conditions demonstrates the feasibility of such approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号