首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

2.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

3.
The goal of this paper is to point out that the results obtained in the recent papers (Chen and Song in Nonlinear Anal 72:1895–1901, 2010; Chu in J Math Anal Appl 327:1041–1045, 2007; Chu et al. in Nonlinear Anal 59:1001–1011, 2004a, J. Math Anal Appl 289:666–672, 2004b) can be seriously strengthened in the sense that we can significantly relax the assumptions of the main results so that we still get the same conclusions. In order to do this first, we prove that for \(n \ge 3\) any transformation which preserves the n-norm of any n vectors is automatically plus-minus linear. This will give a re-proof of the well-known Mazur–Ulam-type result that every n-isometry is automatically affine (\(n \ge 2\)) which was proven in several papers, e.g. in Chu et al. (Nonlinear Anal 70:1068–1074, 2009). Second, following the work of Rassias and ?emrl (Proc Am Math Soc 118:919–925, 1993), we provide the solution of a natural Aleksandrov-type problem in n-normed spaces, namely, we show that every surjective transformation which preserves the unit n-distance in both directions (\(n\ge 2\)) is automatically an n-isometry.  相似文献   

4.
We provide two new characterizations of the Takagi function as the unique bounded solution of some systems of two functional equations. The results are independent of those obtained by Kairies (Wy? Szko? Ped Krakow Rocznik Nauk Dydakt Prace Mat 196:73–82, 1998), Kairies (Aequ Math 53:207–241, 1997), Kairies (Aequ Math 58:183–191, 1999) and Kairies et al. (Rad Mat 4:361–374, 1989; Errata, Rad Mat 5:179–180, 1989).  相似文献   

5.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

6.
Let (Xd) be a metric space, Y be a nonempty subset of X, and let \(T:Y \rightarrow P(X)\) be a non-self multivalued mapping. In this paper, by a new technique we study the fixed point theory of multivalued mappings under the assumption of the existence of a bounded sequence \((x_n)_n\) in Y such that \(T^nx_n\subseteq Y,\) for each \(n \in \mathbb {N}\). Our main result generalizes fixed point theorems due to Matkowski (Diss. Math. 127, 1975), W?grzyk (Diss. Math. (Rozprawy Mat.) 201, 1982), Reich and Zaslavski (Fixed Point Theory 8:303–307, 2007), Petru?el et al. (Set-Valued Var. Anal. 23:223–237, 2015) and provides a solution to the problems posed in Petru?el et al. (Set-Valued Var. Anal. 23:223–237, 2015) and Rus and ?erban (Miskolc Math. Notes 17:1021–1031, 2016).  相似文献   

7.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

8.
In a series of papers (J Phys A 44:365304, 2011; Complex Anal Oper Theory 7:1299–1310, 2013; J Math Pures Appl 99:165–173, 2013; J Math Pures Appl 103:522–534, 2015), we have investigated some mathematical properties of superoscillating sequences in one variable, and their persistence in time. In this paper we study the notion of superoscillation in several variables and we show how to construct examples of sequences that exhibit this property.  相似文献   

9.
Field inversion in \(\mathbb {F}_{2^{m}}\) dominates the cost of modern software implementations of certain elliptic curve cryptographic operations, such as point encoding/hashing into elliptic curves (Brown et al. in: Submission to NIST, 2008; Brown in: IACR Cryptology ePrint Archive 2008:12, 2008; Aranha et al. in: Cryptology ePrint Archive, Report 2014/486, 2014) Itoh–Tsujii inversion using a polynomial basis and precomputed table-based multi-squaring has been demonstrated to be highly effective for software implementations (Taverne et al. in: CHES 2011, 2011; Oliveira et al. in: J Cryptogr Eng 4(1):3–17, 2014; Aranha et al. in: Cryptology ePrint Archive, Report 2014/486, 2014), but the performance and memory use depend critically on the choice of addition chain and multi-squaring tables, which in prior work have been determined only by suboptimal ad-hoc methods and manual selection. We thoroughly investigated the performance/memory tradeoff for table-based linear transforms used for efficient multi-squaring. Based upon the results of that investigation, we devised a comprehensive cost model for Itoh–Tsujii inversion and a corresponding optimization procedure that is empirically fast and provably finds globally-optimal solutions. We tested this method on eight binary fields commonly used for elliptic curve cryptography; our method found lower-cost solutions than the ad-hoc methods used previously, and for the first time enables a principled exploration of the time/memory tradeoff of inversion implementations.  相似文献   

10.
The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).  相似文献   

11.
We prove a sharp pinching estimate for immersed mean convex solutions of mean curvature flow which unifies and improves all previously known pinching estimates, including the umbilic estimate of Huisken (J Differ Geom 20(1):237–266, 1984), the convexity estimates of Huisken–Sinestrari (Acta Math 183(1):45–70, 1999) and the cylindrical estimate of Huisken–Sinestrari (Invent Math 175(1):137–221, 2009; see also Andrews and Langford in Anal PDE 7(5):1091–1107, 2014; Huisken and Sinestrari in J Differ Geom 101(2):267–287, 2015). Namely, we show that the curvature of the solution pinches onto the convex cone generated by the curvatures of any shrinking cylinder solutions admitted by the initial data. For example, if the initial data is \((m+1)\)-convex, then the curvature of the solution pinches onto the convex hull of the curvatures of the shrinking cylinders \(\mathbb {R}^m\times S^{n-m}_{\sqrt{2(n-m)(1-t)}}\), \(t<1\). In particular, this yields a sharp estimate for the largest principal curvature, which we use to obtain a new proof of a sharp estimate for the inscribed curvature for embedded solutions (Brendle in Invent Math 202(1):217–237, 2015; Haslhofer and Kleiner in Int Math Res Not 15:6558–6561, 2015; Langford in Proc Am Math Soc 143(12):5395–5398, 2015). Making use of a recent idea of Huisken–Sinestrari (2015), we then obtain a series of sharp estimates for ancient solutions. In particular, we obtain a convexity estimate for ancient solutions which allows us to strengthen recent characterizations of the shrinking sphere due to Huisken–Sinestrari (2015) and Haslhofer–Hershkovits (Commun Anal Geom 24(3):593–604, 2016).  相似文献   

12.
Brownian motions, martingales, and Wiener processes are introduced and studied for set valued functions taking values in the subfamily of compact convex subsets of arbitrary Banach spaces X. The present paper is an application of the paper (Labuschagne et al. in Quaest Math 30(3):285–308, 2007) in which an embedding result is obtained which considers also the ordered structure of the family of compact convex subsets of a Banach space X and of Grobler and Labuschagne (J Math Anal Appl 423(1):797–819, 2015; J Math Anal Appl 423(1):820–833, 2015) in which these processes are considered in f-algebras. Moreover, in the space of continuous functions defined on a Stonian space, a direct Levy’s result follows.  相似文献   

13.
We derive a parabolic version of Omori–Yau maximum principle for a proper mean curvature flow when the ambient space has lower bound on \(\ell \)-sectional curvature. We apply this to show that the image of Gauss map is preserved under a proper mean curvature flow in euclidean spaces with uniformly bounded second fundamental forms. This generalizes the result of Wang (Math Res Lett 10:287–299, 2003) for compact immersions. We also prove a Omori–Yau maximum principle for properly immersed self-shrinkers, which improves a result in Chen et al. (Ann Glob Anal Geom 46:259–279, 2014).  相似文献   

14.
In this paper we provide a simple proof of the existence coupled fixed point theorem in complete cone metric spaces due to Sabetghadam et al. (Fixed Point Theory Appl 2009:8, 2009) and due to Olatinwo (Annali Dell’Universita’Di Ferrara 57:173–180, 2011). In particular we prove that these results are spacial cases of Rezapour and Hamlbarani’s theorems (J Math Anal Appl 345(2):719–724, 2008).  相似文献   

15.
Building on the seminal work by Shaked and Shanthikumar (Adv Appl Probab 20:427–446, 1988a; Stoch Process Appl 27:1–20, 1988b), Denuit et al. (Eng Inf Sci 13:275–291, 1999; Methodol Comput Appl Probab 2:231–254, 2000; 2001) studied the stochastic s-increasing convexity properties of standard parametric families of distributions. However, the analysis is restricted there to a single parameter. As many standard families of distributions involve several parameters, multivariate higher-order stochastic convexity properties also deserve consideration for applications. This is precisely the topic of the present paper, devoted to stochastic \((s_1,s_2,\ldots ,s_d)\)-increasing convexity of distribution families indexed by a vector \((\theta _1,\theta _2,\ldots ,\theta _d)\) of parameters. This approach accounts for possible correlation in multivariate mixture models.  相似文献   

16.
It is well known that the Gaussian symplectic ensemble is defined on the space of \(n\times n\) quaternion self-dual Hermitian matrices with Gaussian random elements. There is a huge body of literature regarding this kind of matrices based on the exact known form of the density function of the eigenvalues (see Erd?s in Russ Math Surv 66(3):507–626, 2011; Erd?s in Probab Theory Relat Fields 154(1–2):341–407, 2012; Erd?s et al. in Adv Math 229(3):1435–1515, 2012; Knowles and Yin in Probab Theory Relat Fields, 155(3–4):543–582, 2013; Tao and Vu in Acta Math 206(1):127–204, 2011; Tao and Vu in Electron J Probab 16(77):2104–2121, 2011). Due to the fact that multiplication of quaternions is not commutative, few works about large-dimensional quaternion self-dual Hermitian matrices are seen without normality assumptions. As in natural, we shall get more universal results by removing the Gaussian condition. For the first step, in this paper, we prove that the empirical spectral distribution of the common quaternion self-dual Hermitian matrices tends to the semicircular law. The main tool to establish the universal result is given as a lemma in this paper as well.  相似文献   

17.
In this note, we present perturbation analysis for the total least squares (Tls) problems under the genericity condition. We review the three condition numbers proposed respectively by Zhou et al. (Numer. Algorithm, 51 (2009), pp. 381–399), Baboulin and Gratton (SIAM J. Matrix Anal. Appl. 32 (2011), pp. 685–699), Li and Jia (Linear Algebra Appl. 435 (2011), pp. 674–686). We also derive new perturbation bounds.  相似文献   

18.
Despite the development of sophisticated techniques such as sequential Monte Carlo (Del Moral et al. in J R Stat Soc Ser B 68(3):411–436, 2006), importance sampling (IS) remains an important Monte Carlo method for low dimensional target distributions (Chopin and Ridgway in Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation, 32:64–87, 2017). This paper describes a new technique for constructing proposal distributions for IS, using affine arithmetic (de Figueiredo and Stolfi in Numer Algorithms 37(1–4):147–158, 2004). This work builds on the Moore rejection sampler (Sainudiin in Machine interval experiments, Cornell University, Ithaca, 2005; Sainudiin and York in Algorithms Mol Biol 4(1):1, 2009) to which we provide a comparison.  相似文献   

19.
Discrete derived categories were studied initially by Vossieck (J Algebra 243:168–176, 2001) and later by Bobiński et al. (Cent Eur J Math 2:19–49, 2004). In this article, we describe the homomorphism hammocks and autoequivalences on these categories. We classify silting objects and bounded t-structures.  相似文献   

20.
Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with \(\delta W^{\pm }=0\) is either Einstein, or a finite quotient of \(S^3\times \mathbb {R}\), \(S^2\times \mathbb {R}^2\) or \(\mathbb {R}^4\). We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of \(M\times \mathbb {C}\), where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号