首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Pyrolytic reactions of Japanese cedar (Cryptomeria japonica, a softwood) and Japanese beech (Fagus crenata, a hardwood) milled wood lignins (MWLs) were studied with thermogravimetry (TG) and by pyrolysis in a closed ampoule reactor (N2/600 °C). The data were compared with those of guaiacol/syringol as simple lignin model aromatic nuclei. Several DTG peaks were observed around 300-350, 450, 590 and 650 °C. The first DTG peak temperature (326 °C) of beech was lower than that (353 °C) of cedar. This indicates that the volatile formation from cedar MWL is slightly delayed in heating at 600 °C. The gas-phase reactions via GC/MS-detectable low MW products were explainable with the temperature-dependent reactions observed for guaiacol/syringol in our previous paper. The methoxyl groups became reactive at ∼450 °C, giving O-CH3 homolysis products (catechols/pyrogallols) and OCH3 rearrangement products (cresols/xylenols). The former homolysis products were effectively converted into gaseous products (mainly CO) at >550-600 °C. However, the GC/MS-detectable tar yields, especially syringyl unit-characteristic products, were much lower than those from guaiacol/syringol. Thus, contributions of higher MW intermediates and solid/liquid-phase reactions are more important in lignin pyrolysis. From the results of stepwise pyrolysis of char + coke fractions at 450 and 600 °C, the methoxyl group-related reactions (450 °C) and intermediates gasification (600 °C) were suggested to occur also in the solid/liquid phase. This was consistent with the DTG peaks observed around these temperatures. These solid/liquid-phase reactions reduced the tar formation, especially catechols/pyrogallols and PAHs. Different features observed between these two MWLs are also focused.  相似文献   

2.
Thermal reactivities of lignin pyrolysis intermediates, catechols/pyrogallols (O-CH3 homolysis products) and cresols/xylenols (OCH3 rearrangement products), were studied in a closed ampoule reactor (N2/600 °C/40-600 s) to understand their roles in the secondary reactions step. Reactivity tends to be enhanced by increasing the number of substituent groups on phenol and this effect was greater for -OH than for -CH3. Thus, catechols/pyrogallols were more reactive than cresols/xylenols and syringol-derived products were more reactive than corresponding guaiacol-derived products. Catechols/pyrogallols were effectively converted into CO (additionally CO2 in the case of pyrogallols) in the early stage of pyrolysis. In contrast, cresols/xylenols were comparatively stable and produced H2, CH4 and demethylation products (cresols and phenol) after prolonged heating. All intermediates except phenol and 2-ethylphenol formed coke during a long heating time of 600 s (second stage coking). Based on the present results, the roles of intermediates in tar, coke and gas formation from guaiacol and syringol are discussed at the molecular level, focusing on their differences. Molecular mechanisms of gas formation from pyrogallols and demethylation of cresols/xylenols are also discussed.  相似文献   

3.
This study deals with the reduction of Fe3O4 by H2 in the temperature range of 210-950 °C. Two samples of Fe3O4 produced at 600 and 1200 °C, designated as Fe3O4(600) and Fe3O4(1200), have been used as starting material.Reduction of Fe3O4(600) by H2 is characterized by an apparent activation energy ‘Ea’ of 200, 71 and 44 kJ/mol at T < 250 °C, 250 °C < T < 390 °C and T > 390 °C, respectively. The important change of Ea at 250 °C could be attributed to the removal of hydroxyl group and/or point defects of magnetite. This is confirmed during the reduction of Fe3O4(1200). While transition at T ≈ 390 °C is probably due to sintering of the reaction products as revealed by SEM.In situ X-rays diffraction reduction experiments confirm the formation of stoichiometric FeO between 390 and 570 °C. At higher temperatures, non-stoichiometric wüstite is the intermediate product of the reduction of Fe3O4 to Fe.The physical and chemical modifications of the reduction products at about 400 °C, had been confirmed by the reduction of Fe3O4(600) by CO and that of Fe3O4(1200) by H2. A minimum reaction rate had been observed during the reduction of Fe3O4(1200) at about 760 °C. Mathematical modeling of experimental data suggests that the reaction rate is controlled by diffusion and SEM observations confirm the sintering of the reaction products.Finally, one may underline that the rate of reduction of Fe3O4 with H2 is systematically higher than that obtained by CO in the explored temperature range.  相似文献   

4.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

5.
Thermal degradation of sheep wool, human hair and chicken feathers was studied by TG-MSD/FTIR and by pyrolysis followed by GC-MSD analysis in order to identify the degradation compounds and the temperature range in which they are formed. Only small differences were found between the studied keratin samples. They consist mainly in shift of characteristic temperatures of degradation and in relative amounts of compounds in degradation products, especially in aqueous phase. Degradation started with formation of ammonia and CO2 (from 167 and 197 °C respectively and with maximum evolution at 273 and 287 °C respectively), continues with formation of sulphur-containing inorganic compounds (SCS, SCO, H2S and SO2 at 240, 248, 255 and 253-260 °C respectively) and of water (255 °C). Thiols are formed in two stages (257 and 320 °C) while the evolution of nitriles is maximum around 340 °C and continues up to about 480 °C. Phenol and 4-methylphenol are the most important degradation compounds, formed at 370 and 400 °C respectively. Nitrogen was present mainly in aliphatic/aromatic nitriles, pyrroles, pyridines and amides while sulphur was found mainly as sulphides, thiols, thiazoles and thiophenes.  相似文献   

6.
The pressure-less sintering behavior of PbTiO3 powders synthesized by mechanical alloying TiO2 and PbO was investigated using dilatometry and Rietveld refinements of X-ray diffraction patterns. As-synthesized, the powders are nanocrystalline with a mean particle size of 20 nm. Pressure-less sintering in the range 500-1050°C gives single phase ceramics with densities of 85-90% and crystallite sizes in the range 80-400 nm. Cracking due to the paraelectric-ferroelectric phase transition was not observed in samples sintered below 700°C due to the small crystallite size whereas macroscopic cracks formed in samples sintered above 700°C. Rietveld analysis indicates the formation of Pb vacancies in samples sintered and held for 24 h at intermediate temperatures (600-1000°C) which gives some insight into the mechanism of Pb loss and second phase formation in this system.  相似文献   

7.
Perfluoropolyether (PFPE) diacyl halides of formula XCOCF2O[(CF2O)n(CF2CF2O)m]pCF2COX, with X = Cl, F and molecular weight (MW) 400-4000 g mol−1 are smoothly converted in high yields to the corresponding α, ω diiodides in the absence of solvent, employing KI or LiI at 210 °C with extrusion of CO. During the reactions, β-elimination of COF2 from the terminal difluoromethylene oxide units (CF2O, C1 unit) occurs to some extent until a tetrafluoroethylene oxide unit (OCF2CF2, C2 unit) is encountered yielding a OCF2CF2I terminus. This considerably alters the MW distribution of the final diiodide especially for low MW PFPEs. Operating in supercritical conditions of CO (scCO) or both scCO and CO2 (scCO2) on low (<600 g mol−1) MW diacyl halides, lowers β-elimination from 95 to 52 mol% if KI is used or from 43 to 30 mol% if LiI is used. With higher MW (>600 g mol−1) β-elimination is lowered from 15 to <1 mol% in scCO conditions employing KI.  相似文献   

8.
The thermal degradation mechanism of poly(vinyl acetate) (PVAc) and poly(ethylene-co-vinyl acetate) (EVA) copolymers was investigated with solid-state NMR, thermogravimetry coupled with mass spectrometry and differential thermal analysis. Between 300 and 400 °C acetic acid is eliminated (deacetylation), leaving a highly unsaturated residue or polyene. The deacetylation of PVAc is autocatalytic. Upon incorporation of ethylene entities into the polymer backbone, autocatalysis disappears. Between 400 and 500 °C, the polyene will degrade further by chain scission reactions in inert conditions or aromatise in an oxidative environment into a char, and oxidised eventually into CO2 beyond 500 °C.In inert conditions, the deacetylation step as well as the chain scission reaction shows endothermic effects. In an oxidative environment, large exothermal effects are found for each degradation step. This indicates the occurrence of additional oxidation reactions during deacetylation, an important reorganisation of the polyene during char formation and oxidation of the latter into CO2.  相似文献   

9.
A series of Al-substituted YBa(Co1−xAlx)4O7+δ samples was synthesized and characterized with respect to the capability to store large amounts of oxygen at low temperatures (at 200-400 °C) and the phase decomposition upon heating under oxidizing conditions at higher temperatures (above 550 °C). It was revealed that increasing the Al-substitution level up to x≈0.10 boosts up the phase-decomposition temperature from ∼550 to ∼700 °C, while the unique oxygen absorption/desorption characteristics remain nearly the same as those of the pristine YBaCo4O7+δ phase. The maximum amount of excess oxygen absorbed by the Al-substituted YBa(Co1−xAlx)4O7+δ samples was determined to be as large as δ≈1.45 for x=0.10 (in 100 atm O2 at 320 °C). Isothermal annealing experiments carried out for the same x=0.10 phase at 300 °C revealed that it could be reversibly charged and discharged with 1.2 oxygen atoms per formula unit by switching the gas flow from N2 to O2 and vice versa.  相似文献   

10.
In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the CaxSr1−xWO4 (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 °C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 °C, which is neither highly disordered (400-500 °C), nor completely ordered (700 °C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO4 or SrWO4, but for Ca0.6Sr0.4WO4. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO4 and SrWO4.  相似文献   

11.
Eytan Gershonov 《Tetrahedron》2007,63(18):3762-3767
Three different types of oxidation reactions were carried out under microwave (MW) conditions in dry media, with nearly quantitative yield, using ‘in situ’, yet separately generated molecular oxygen as the reactive gas. The latter is formed by a controlled decomposition of potassium chlorate (220-306 °C) adsorbed on zeolite support, and is used as a reactive oxidizing agent for the solid-supported oxidations. The MW-assisted oxidations include an oxidative decomplexation of (η6-arene)Cr(CO)3 complexes to the corresponding arenes using silica as solid support (100 °C), an oxidation of fluorene to fluorenone induced by KF-alumina support (150 °C), and oxidation of benzyl alcohol to benzaldehyde using a supported ruthenium catalyst (150 °C). This synthetic approach allows to carry out in synchronized manner two different solid-supported reactions (oxygen generation and oxidation) at different temperatures and on different solid supports together in the same sealed system. It was made possible by tuning the absorption efficiency of MWs through accurate selection of the solid supports employed in the reactions. The high feasibility of this novel synthetic approach resulted from a preliminary study of the interaction between MWs and mineral oxides such as alumina, silica, clay, and zeolite particularly when mixed with additives such as water, ionic liquids or graphite (5% w/w). The use of these MW absorber additives allows the MW transparent or poorly absorbing mineral oxides to be efficiently heated to very high temperatures in few minutes.  相似文献   

12.
A series of copolyimides were prepared from benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) and various aromatic diamines which contain a fluorenyl group and/or alkyl substituents in ortho position to the amine groups. The effect of the chemical composition on the glass transition temperature (Tg), thermal stability as well as on the dielectric constant of these polymers was studied. High Tg polymers (Tg ranging from 260 °C to 370 °C), withstanding temperatures as high as 400 °C for 10 h and having a low dielectric constant (from 2.6 to 3.1) were successfully synthesized. All these polymers were able to crosslink under UV or thermal treatments.  相似文献   

13.
Complex formation equilibria between Ag(I) and thiourea or N-alkyl-substituted thioureas have been investigated in n-propanol by potentiometry at 10 °C intervals from 5 to 50 °C. Stepwise formation of tris-coordinated AgLn (n = 1-3) complexes has been found for the majority of the ligands. ΔH and ΔS values for the complex formation reactions have been evaluated from the dependence of ln βn on temperature. The alkyl-substituents affect the ligand affinities in different ways in relation with the coordination level n.The reactions are exothermic with few exceptions. Enthalpy favoured complex formation with negative dependence of ΔG on temperature (ΔS > 0) have been found.The enthalpy and entropy changes for the stepwise complex formation equilibria are correlated by two linear compensative relationships with the same isoequilibrium temperature 50-51 °C.  相似文献   

14.
Metallocenyl carbinols FcCH2OH (1a) and RcCH2OH (1b) dissolved in sc-CO2 penetrate into the acidic Nafion film under 20 MPa and 80 or 35 °C. After removal of pressure and leaving at room temperature, the crystals rapidly formed on the surface of the film, were identified as ethers McCH2OCH2Mc, Mc = Fc or Rc, by X-ray study. Mechanism of their formation is discussed.  相似文献   

15.
Complex PdCl2(4,4′-bis-(n-C10F21CH2OCH2)-2,2′-bpy) (2b) was known to be a good recoverable catalyst under fluorous biphasic system. Complex 2b and PdCl2(4,4′-bis-(n-C11F23CH2OCH2)-2,2′-bpy) (2c), soluble in polar organic solvents at >120 °C but insoluble at 25 °C, were demonstrated here as catalysts in the Pd-catalyzed Heck reaction under the thermomorphic mode and recovered for reusage, that is, the Heck reaction is homogeneously carried out at ca 140 °C, and after reaction the product mixtures remain in solution with the catalyst heterogeneously separated at room temperature.  相似文献   

16.
Bi2WO6 powder photocatalyst was prepared using Bi(NO3)3 and Na2WO4 as raw materials by a simple hydrothermal method at 150 °C for 24 h, and then calcined at 300, 400, 500, 600 and 700 °C for 2 h, respectively. The as-prepared samples were characterized with UV-visible diffuse reflectance spectra, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption measurement. The photocatalytic activity of the samples was evaluated using the photocatalytic oxidation of formaldehyde at room temperature under visible light irradiation. It was found that post-treatment temperature obviously influenced the visible-light photocatalytic activity and physical properties of Bi2WO6 powders. At 500 °C, Bi2WO6 powder photocatalyst showed the highest visible-light photocatalytic activity due to the samples with good crystallization and high BET surface area.  相似文献   

17.
Broadband microwave spectra were recorded over the 2-18 GHz frequency range for a series of four model aromatic components of lignin; namely, guaiacol (ortho-methoxy phenol, G ), syringol (2,6-dimethoxy phenol, S ), 4-methyl guaiacol ( MG ), and 4-vinyl guaiacol ( VG ), under jet-cooled conditions in the gas phase. Using a combination of 13C isotopic data and electronic structure calculations, distortions of the phenyl ring by the substituents on the ring are identified. In all four molecules, the rC(1)-C(6) bond between the two substituted C-atoms lengthens, leading to clear bond alternation that reflects an increase in the phenyl ring resonance structure with double bonds at rC(1)-C(2), rC(3)-C(4) and rC(5)-C(6). Syringol, with its symmetric methoxy substituents, possesses a microwave spectrum with tunneling doublets in the a-type transitions associated with H-atom tunneling. These splittings were fit to determine a barrier to hindered rotation of the OH group of 1975 cm−1, a value nearly 50 % greater than that in phenol, due to the presence of the intramolecular OH⋅⋅⋅OCH3 H-bonds at the two equivalent planar geometries. In 4-methyl guaiacol, methyl rotor splittings are observed and used to confirm and refine an earlier measurement of the three-fold barrier V3=67 cm−1. Finally, 4-vinyl guaiacol shows transitions due to two conformers differing in the relative orientations of the vinyl and OH groups.  相似文献   

18.
Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH)2 and CuCO3 and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 °C), hydrothermally (150 °C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 °C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 °C itself. Reductive decomposition yields a composite of Cu2O and Al(OH)3, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu2O (<1 μm).  相似文献   

19.
Formation of nano-sized Y2O3-doped CeO2 (YCO) was observed in the chemical reaction between proton conducting Y2O3-doped BaCeO3 (BCY) and CO2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li2ZrO3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO2 (a=5.410 (1) Å) structure and BaCO3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO2 reported in the literature.  相似文献   

20.
A CF3-containing diamine, 2,2′-thiobis-[4-methyl(2-trifluoromethyl)4-aminophenoxy) phenyl ether] (DA), was successfully synthesized from 2-2′-sulfide-bis-(4-methyl phenol) and 2-chloro-5-nitrobenzotrifluoride. The sulfur containing diimide-diacid (DIDA) was prepared by condensation reaction of diamine DA and trimellitic anhydride. A series of novel organic-soluble polyamide-imides (PAIs) bearing flexible ether and sulfide links, electron-withdrawing trifluoromethyl groups and ortho-phenylene units were synthesized from DIDA, by direct polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone using triphenyl phosphite and pyridine as a condensing agent in the presence of dehydrating agent (LiCl). The polyamide-imides were obtained in high yields and possessed inherent viscosities in the range of 0.42-0.95 dL g−1. All of the polymers were amorphous in nature, showed outstanding solubility and could be easily dissolved in amide-type polar aprotic solvents (e.g., N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide) and even dissolved in less polar solvents (e.g., pyridine and tetrahydrofuran). They showed good thermal stability with glass transition temperatures between 195-245 °C, 10% weight loss temperatures in excess of 485 °C, and char yields more than 50% at 700 °C in nitrogen atmosphere. Moreover, these PAIs possessed low refractive indexes (n = 1.57-1.59) and low birefringence (Δ ≈ 0.02) due to the trifluoromethyl pendent groups and thioether bridged ortho-catenated aromatic rings that interrupt chain packing and increase free volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号