首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The bis‐tetrazolate‐pyridine ligand H2pytz sensitises efficiently the visible and/or near‐IR luminescence emission of ten lanthanide cations (Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb). The LnIII complexes present sizeable quantum yields in both domains with a single excitation source. The wide range of possible colour combinations in water, organic solvents and the solid state makes the complexes very attractive for labelling and encoding.  相似文献   

2.
The condition of thermal decomposition of La, Ce(III), Pr(III), Nd, Sm, Eu(III), Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu suberates were studied. The suberates of Ce(III), Sm, Eu(III), Ho, Tm, Yb and Lu heated lose crystallization water. Anhydrous Sm and Eu(III) suberates decompose to oxides with intermediate formation Ln2O2CO3, whereas suberates of other lanthanides decompose directly to oxides. Suberates of La, Pr(III), Nd, Gd, Tb, Dy and Er lose some water molecules and then decompose directly to oxides. Only La complex decomposes to La2O3 via the intermediate formation La2O2CO3.
Zusammenfassung Es wurden die UmstÄnde der thermischen Zersetzung von La-, Ce(III)-, Pr(III)-, Nd-, Sm-, Eu(III)-, Gd-, Tb-, Dy-, Ho-, Er-, Tm-, Yb- und Lu-suberat untersucht. Bei Erhitzen verlieren Ce(III)-, Sm-, Eu(III)-, Ho-, Tm-, Yb- und Lu-suberat Kristallwasser. Wasserfreies Sm-bzw. Eu(III)-suberat zersetzt sich über das Zwischenprodukt der Zusammensetzung Ln2O2CO3 zum Oxid, wÄhrend sich die Suberate der anderen Lanthanoide direkt zu den Oxiden zersetzen. La-, Pr(III)-, Nd-, Gd-, Tb-, Dy- und Er-suberat geben einige Moleküle Kristallwasser ab und zersetzen sich dann direkt zu den Oxiden. Nur der Lanthankomplex zersetzt sich zu La2O3 über das Zwischenprodukt La2O2CO3.
  相似文献   

3.
The complexes of yttrium and heavy lanthanides with 3,4-dimethoxybenzoic acid of the formula: Ln(C9 H9 O4 )3 ×n H2 O, where Ln =Y(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III) and Lu(III), and n =4 for Tb(III), Dy(III), n =3 for Ho(III), and n =0 for Er(III), Tm(III), Yb(III), Lu(III) and Y(III) have been prepared and characterized by elemental analysis, IR spectroscopy, thermogravimetric and magnetic studies and X-ray diffraction measurements. The complexes have colours typical of Ln3+ ions (Ho - cream, Tb, Dy, Yb, Lu, Y - white, Er - salmon). The carboxylate group in these complexes is a symmetrical, bidentate, chelating ligand. They are crystalline compounds characterized by various symmetry. On heating in air to 1273 K the hydrated 3,4-dimethoxybenzoates decompose in two steps while those of anhydrous only in one stage. The tetrahydrates of Tb and Dy and trihydrate of Ho 3,4-dimethoxybenzoates are firstly dehydrated to form anhydrous salts that next are decomposed to the oxides of the respective metals. The complexes of Er, Tm, Yb, Lu and Y are directly decomposed to the oxides of the appropriate elements. The solubility in water at 293 K for yttrium and heavy lanthanides is in the order of 10-4 -10-3 mol dm-3 . The magnetic moments of the complexes were determined over the range 77–298 K. They obey the Curie-Weiss law. The values of μeff calculated for all compounds are close to those obtained for Ln3+ by Hund and van Vleck. The results show that there is no influence of the ligand field on 4f electrons of lanthanide ions in these polycrystalline compounds and 4f electrons do not take part in the formation of M-O bonding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Magneto optical devices based on the Faraday effects of lanthanide ion have attracted much attention. Recently, large Faraday effects were found in nano‐sized multinuclear lanthanide complexes. In this study, the Faraday rotation intensities were estimated for lanthanide nitrates [LnIII(NO3)3?n H2O: Ln=Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm) and EuIII complexes with β‐diketone ligands, using magnetic circular dichroism. Eu ions exhibit the largest Faraday rotation intensity for 7F05D1 transitions, and high‐symmetry fields around the Eu ions induce larger Faraday effects. The molecular design for the enhancement of Faraday effects in lanthanide complexes is discussed.  相似文献   

5.
The complexes of heavy lanthanides and yttrium with 2,3-dimethoxybenzoic acid of the formula: Ln(C9h9O4)3·nH2O, where Ln=Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III), Y(III), and n=2 for Tb(III), Dy(III), Ho(III), Y(III), n=1 for Er(III), Tm(III), n=0 for Yb(III) and Lu(III) have been synthesized and characterized by elemental analysis, ir spectroscopy, thermogravimetric studies and x-ray diffraction measurements. The complexes have colours typical for Lnł3+ ions (Tb(III), Dy(III), Tm(III), Yb(III), Lu(III), Y(III) - white; Ho(III) - cream and Er(III) - salmon). the carboxylate groups in these complexes are a symmetrical, bidentate, chelating ligand or tridentate chelating-bridging. they are isostructural crystalline compounds characterized by low symmetry. On heating in air to 1273 k the 2,3-dimethoxybenzoates of heavy lanthanides and yttrium decompose in various ways. The complexes of Tb(III), Dy(III), Ho(III), Er(III), Tm(III) and Y(III) at first dehydrate to form anhydrous salts which next are decomposed to the oxides of the respective metals. 2,3-dimethoxybenzoates of Yb(III) and Lu(III) are directly decomposed to oxides. When heated in nitrogen the hydrates also dehydrate in one step to form the anhydrous complexes that next form the mixture of carbon and oxides of respective metals or their carbonates. The solubility of the yttrium and heavy lanthanide 2,3-dimethoxybenzoates in water at 293 k is of the order of 10-2 mol dm-3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The complexes of yttrium and heavy lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O4)3×nH2O, where Ln=Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III), n=2 for Tb(III), Dy(III), Ho(III), Er(III), Tm(III) and Y(III), and n=0 for Yb(III) and Lu(III), have been synthesized and characterized by elemental analysis, IR spectroscopy, themogravimetric studies, as well as X–ray and magnetic susceptibility measurements. The complexes have a colour typical of Ln 3+ salts (Tb, Dy, Tm, Yb, Lu, Y – white, Ho – cream, Er – pink). The carboxylate group in these complexes is a bidentate, chelating ligand. The compounds form crystals of various symmetry. 2,4-Dimethoxybenzoates of Yb(III) and Lu(III) are isostructural. 2,4-Dimethoxybenzoates of yttrium and heavy lanthanides decompose in various ways on heating in air to 1173 K. The hydrated complexes first lose water to form anhydrous salts and then decompose to the oxides of respective metals. The ytterbium and lutetium 2,4-dimethoxybenzoates decompose in one step to form Yb2O3 and Lu2O3. The solubilities of the 2,4-dimethoxybenzoates of yttrium and heavy lanthanides in water and ethanol at 293 K are of the order of: 10–3 and 10–3 –10–2 mol dm–3, respectively. The magnetic moments for the complexes were determined over the range of 77–298 K. They obey the Curie–Weiss law. The results show that there is no influence of the ligand field on the 4f electrons of lanthanide ions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In this study, new series of lanthanide 4,4??-oxybis(benzoates) of the general formula Ln2oba3·nH2O, where Ln = lanthanides from La(III) to Lu(III), oba?=?C12H8O(COO) 2 2? and n?=?3?C6, has been prepared under hydrothermal conditions. The compounds were characterized by elemental analysis, infrared spectroscopy, X-ray diffraction patterns measurements and different methods of thermal analysis (TG, DSC, and TG-FTIR). In addition, photoluminescence properties of the selected complexes have been investigated. Crystalline compounds are isostructural in the whole series. Both carboxylate groups are deprotonated and engaged in the coordination of Ln(III) ions. Heating of the complexes leads to the dehydration and next decomposition processes. Although of the same structure, the removal of water molecules proceeds in different ways. In the nitrogen atmosphere, they decompose releasing water, carbon oxides and phenol molecules. The complexes of Eu(III), Tb(III) and Dy(III) exhibit photoluminescence in the visible range, whereas the compounds of Nd(III) and Yb(III) in the near-infrared region upon excitation by UV light.  相似文献   

8.
The conditions of thermal decomposition of Tb(III), Dy, Ho, Er, Tm, Yb and Lu aconitates have been studied. On heating, the aconitates of heavy lanthanides lose crystallization water to yield anhydrous salts, which are then transformed into oxides. The aconitate of Tb(III) decomposes in two stages. First, the complex undergoes dehydration to form the anhydrous salt, which next decomposes directly to Tb4O7. The aconitates of Dy, Ho, Er, Tm, Yb and Lu decompose in three stages. On heating, the hydrated complexes lose crystallization water, yielding the anhydrous complexes; these subsequently decompose to Ln2O3 with intermediate formation of Ln2O2CO3.  相似文献   

9.
Hydrazine hydrate reacts with sulphur dioxide in aqueous solution in the presence of heavier lanthanide(III) ions to give variety of complexes. The nature of product formed is highly pH dependent. Several hydrazine complexes of Ln(III) ions of the compositions Ln(N2H3SOO)3(H2O), Ln2(SO3)3·2N2H4 and N2H5Ln(SO3)2(H2O)2 where Ln = Eu, Gd, Tb or Dy and the precursors for the hydrazinium lanthanide sulphite hydrates, the anhydrous lanthanide hydrazinecarboxylates, Ln(N2H3COO)3 where Ln = Eu, Gd, Tb or Dy have been prepared and characterized by analytical, spectral, thermal and X-ray powder diffraction techniques. The infrared spectral data are in favour of the coordination of hydrazine and water molecules. These complexes decompose in three stages to yield respective oxides as final residue. The final residues were confirmed by their X-ray powder diffraction patterns and TG mass losses. The SEM photographs of some of the oxides show a lot of cracks indicating that large quantity of gases evolved during decomposition.  相似文献   

10.
The complexation between lanthanide metal ions like Nd(III), Tb(III), and Er(III) with Glimepiride produces 1: 1 molar ratio (metal: Glimepiride) monodentate complexes of general formula: [M(GMP)(H2O)4]Cl3·xH2O, where: M = Nd, Tb, and Er, x = 1, 10, respectively. The structures of obtained compounds were assigned by IR, 1H NMR and UV/Vis spectra. Themogravimetric analysis and kinetic thermodynamic parameters have proved the thermal stability of Glimepiride complexes. Obtained lanthanide complexes showed significant effect against some bacteria and fungi.  相似文献   

11.
Conditions for the preparation of light lanthanide 4-chlorophthalates were investigated and their composition, solubility in water at 295 K, IR spectra and thermal decomposition were determined. 4-Chlorophthalates of La–Nd(III) were prepared as complexes with general formula NaLn[ClC6H3(CO2)2]2, whereas compounds of Sm and Eu have general formula Ln2[ClC6H3(CO2)2]3·6H2O. During heating all complexes decompose to oxides with intermediate formation of oxochlorides. The carboxylate groups in the complexes studied are bidentate bridging (Sm, Eu) or bidentate chelating and bridging (La–Nd).  相似文献   

12.
Pyridine-2,5-dicarboxylic acid, known as isocinchomeric acid is one of six isomers containing two carboxylic groups. Light lanthanide (III) complexes with pyridine-2,5-dicarboxylic acid with general formula Ln2L3·nH2O, where n = 8, 9, were obtained. Their thermal and spectroscopic properties were studied. Sodium salt was obtained as Na2L·H2O. Hydrated complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) are stable to 313–333 K, whereas Na2L·H2O is stable to about 333 K. Dehydration process for all compounds runs in one stage, next they decompose into appropriate lanthanide oxalates, oxocarbonates carbonates and finally to metal oxides. Bands of νCOOH vibrations at 1736 and 1728 cm−1 disappear on complex spectra and νas and νs of COO groups appear thus indicating that complexation process took place.  相似文献   

13.
Five acetate-diphenoxo triply-bridged CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er) of formula [Co(μ-L)(μ-Ac)Ln(NO3)2] and two diphenoxo doubly-bridged CoII-LnIII complexes (LnIII = Gd, Tb) of formula [Co(H2O)(μ-L)Ln(NO3)3]·S (S = H2O or MeOH), were prepared in one pot reaction from the compartmental ligand N,N′,N′′-trimethyl-N,N′′-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylene triamine (H2L). The diphenoxo doubly-bridged CoII-LnIII complexes were used as platforms to obtain 1,5-dicyanamide-bridged tetranuclear CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er). All exhibit ferromagnetic interactions between the CoII and LnIII ions and in the case of the GdIII complexes, the JCoGd were estimated to be ∼+0.7 cm−1. Compound 3 exhibits slow relaxation of the magnetization.  相似文献   

14.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

15.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

16.
The reaction of 1,8-diamino-3,6-diazaoctane and diethyl malonate in dry methanol yielded a 13-membered macrocycle. Complexes of the type [Ln(tatd)Cl2 (H2O)3]Cl [LnIII=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy; tatd=1, 5, 8, 11-tetra-azacyclotridecane-2,4-dione] have been synthesized by template condensation. The complex [La(tatd)Cl2 (H2O)3]Cl in methanol was reacted with lanthanide chlorides to yield the trinuclear complexes of type [2{La(tatd)Cl2(H2O)3}LnCl3]Cl2 [LnIII=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy]. The chemical compositions of mono and trinuclear complexes have been established on the basis of analytical, molar conductance, electrospray (ES) and fast atom bombardment (FAB) mass data. In mononuclear complexes the Ln3+ ion is encapsulated by four ring nitrogens and in trimetallic complexes the exo-carbonyl oxygens of two mononuclear units coordinate to the Ln3+ ions resulting in a polyhedron around the lanthanide ions. Thus the macrocycle is bonded in a tetradentate fashion in the former complexes and hexadentate in the latter. The coordination number nine around the encapsulated Ln3+ and seven around the exo-oxygen bonded Ln3+ ions are established. The symmetry of the ligand field around the metal ions is indicated from the emission spectra.  相似文献   

17.
Summary Complexes of heavy lanthanide(III) (Gd-Lu) and Y(III) with 4-chlorophthalic acid were prepared and their IR spectra, solubility in water at 295 K and thermal decomposition were investigated. When heated the complexes with general formula Ln2[ClC6H3(CO2)2]3·nH2O where n=6 for Tb, Dy(III), n=4 for Gd, Ho and Er(III), n=2 for Tm-Lu(III) and n=3 for Y(III) decompose to the oxides Ln2O3, Tb4O7 with intermediate formation of oxochlorides LnOCl.  相似文献   

18.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

19.
A new method of synthesis of oxide tungsten bronzes containing lanthanide (Ln) Nd and Eu, based on thermal degradation of polyoxotungstate compounds, is proposed. The simplicity of the method allows to consider this class of compounds with chemical formula, LnxWO3, as potential inert target for incineration or transmutation of minor actinides, Am and Cm, in neutron reactors. Nd and Eu were used as analogues of transplutonium elements. Powder X-ray diffraction patterns of compounds synthesized reveal a cubic perovskite structure. The lanthanide content in bronzes was determined by optical spectroscopy analysis. The experimental density of the pressed bronze samples was estimated at 6.58 g cm−3, i.e., 89% of the crystallographic value. The thermal stability of the bronzes synthesized was checked up to 900°C in an inert atmosphere. Leaching tests were performed for europium bronzes in nitric acid solutions using luminescence technique.  相似文献   

20.
Pyridine-2,4-dicarboxylic acid (lutidinic acid) is next one after pyridine-2,5-dicarboxylic acid of the six isomers which lanthanide complexes were studied thermally and spectrally. New complexes synthesized with light lanthanides (III) with general formula Ln2L3·nH2O, where n?=?7.5; 8; 8.5; 9, were obtained. Sodium salt was obtained as hexahydrated compound. Hydrated complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III), and Gd(III) are thermally stable up to 303?C313?K. Dehydration process run for all compounds in one stage, anhydrous compounds decompose through appropriate light lanthanides (III) oxalates, oxocarbonates, carbonates to metal oxides. Theoretical IR and Raman studies were carried out in order to identify precisely characteristic group bands vibrations present on IR and Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号