首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 °C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products’ morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from ∼70 to ∼200 m2 g−1. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g−1. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity.  相似文献   

2.
Core/shell nanostructures have received considerable attention due to the synergistic effect of their combination of materials. In this work, core/shell carbon/multi walled carbon nanotubes (MWNTs) (C-MWNTs) composed of core MWNTs and carbon shells were prepared to obtain a new type of carbon electrode materials. Carbon shells containing nitrogen groups were prepared by coating polyaniline (PANI) onto the MWNTs by in situ polymerization and subsequent carbonization at 850 °C. After carbonization, the C-MWNTs contained 5.84% nitrogen and showed a hollow structure and crystallinity like that of pristine MWNTs. In addition, the C-MWNTs exhibited electrochemical performance superior to that of pristine MWNTs, and the highest specific capacitance (231 F g−1) of the C-MWNTs was obtained at a scan rate of 0.1 A g−1, as compared to 152 F g−1 for pristine MWNTs. This superior performance is attributed to the maintenance of high electrical conductivity by the π–π interaction between the carbon layer and the MWNTs, increased specific surface area of C-MWNTs, and the presence of nitrogen groups formed on the carbon electrode after the carbonization of the shell PANI.  相似文献   

3.
Biogenic amines, and putrescine and cadaverine in particular, have significant importance in the area of food quality monitoring, and are also potentially important markers of infection, for cancer, diabetes, arthritis and cystic fibrosis. A thermal desorption-gas chromatograph-heated differential mobility spectrometer was constructed and the significant effect of interactions between cell temperature and dispersion field strength on the observed responses studied. The experiment design was a Box-Wilson central composite design (CCD) over the levels of 10-24 kV cm−1 for dispersion field strength and 100-130 °C for cell temperature. The optimum values were estimated to be 16.22 kV cm−1 and 116 °C for putrescine and 14.78 kV cm−1 and 112 °C for cadaverine, respectively with an ammonia dopant at 19 mg m−3.An amine test atmosphere generator was constructed and produced stable concentrations of putrescine (7 mg m−3) and cadaverine (4 mg m−3) vapours at 50 ± 0.5 °C. Tenax TA-Carbotrap adsorbent tubes were used to sample putrescine and cadaverine vapour standards and a linear response function over the range of sample masses 5-20 ng was obtained at 15.0 kV cm−1 115 °C, with a R2 of 0.99 for both putrescine and cadaverine. The sample mass at the limit of detection was estimated to be 3 ng for putrescine and cadaverine. Preliminary data from sampling the headspace of chicken meat revealed a 62% increase in the recovered masses of putrescine from 0.84 to 1.36 ng in the sampled air.  相似文献   

4.
A simple one-step method to fabricate hierarchically porous TiO2/Pd composite hollow spheres without any template was developed by using solvothermal treatment. Pd nanoparticles (2-5 nm) were well dispersed in the mesopores of the TiO2 hollow spheres via in-situ reduction. In our experiment, polyvinylpyrrolidone played an important role in the synthetic process as the reducing agent and the connective material between TiO2 and Pd nanoparticles. HF species generated from solvothermal reaction leaded to the formation of TiO2 hollow spheres and Ostwald ripening was another main factor that affected the size and structure of the hollow spheres. The as-prepared TiO2/Pd composite hollow spheres exhibited high electrocatalytic activity towards the reduction of H2O2. The sensitivity was about 226.72 μA mM−1 cm−2 with a detection limit of 3.81 μM at a signal-to-noise ratio of 3. These results made the hierarchically porous TiO2/Pd composite a promising platform for fabricating new nonenzymic biosensors.  相似文献   

5.
The present paper describes a procedure to isolate volatiles from rock-rose (Cistus ladanifer L.) using simultaneous distillation-extraction (SDE). High-value volatile compounds (HVVC) were selected and the influence of the extraction conditions investigated. The effect of the solvent nature and extraction time on SDE efficiency was studied. The best performance was achieved with pentane in 1 h operation. The extraction efficiencies ranged from 65% to 85% and the repeatability varied between 4% and 6% (as a CV%).The C. ladanifer SDE extracts were analysed by headspace solid phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The HS-SPME sampling conditions such as fiber coating, temperature, ionic strength and exposure time were optimized. The best results were achieved with an 85 μm polyacrylate fiber for a 60 min headspace extraction at 40 °C with 20% (w/v) of NaCl. For optimized conditions the recovery was in average higher than 90% for all compounds and the intermediate precision ranged from 4 to 9% (as CV %). The volatiles α-pinene (22.2 mg g−1 of extract), 2,2,6-trimethylcyclohexanone (6.1 mg g−1 of extract), borneol (3.0 mg g−1 of extract) and bornyl acetate (3.9 mg g−1 of extract) were identified in the SDE extracts obtained from the fresh plant material.  相似文献   

6.
This work presents an evaluation of iron and cadmium adsorption in sediment of the Furnas Hydroelectric Plant Reservatory located in Alfenas, Minas Gerais (Brazil). The metal determination was done employing a flow injection analysis (FIA) with an on-line filtering system. As detection techniques, flame atomic absorption spectrometry (FAAS) for iron and thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for cadmium determinations were used. The developed methodology presented good limits of detection, being 190 μg L−1 for iron and 1.36 μg L−1 for cadmium, and high sampling frequency for both metals 144 and 60 readings h−1 for iron and cadmium, respectively. Both metals obey the Langmuir model, with maximum adsorptive capacity of 0⋅169 mg g−1 for iron and 7⋅991 mg g−1 for cadmium. For iron, a pseudo-first-order kinetic model was obtained with a theoretical Qe = 9⋅8355 mg g−1 (experimental Qe = 9⋅5432 mg  g−1), while for cadmium, a pseudo-second-order kinetic model was obtained, with a theoretical Qe = 0.3123 mg g−1 (experimental Qe = 0⋅3052 mg g−1).  相似文献   

7.
A fast method using high-performance liquid chromatography based on two monolithic columns has been developed for the simultaneous determination of isoflavones extracted from soybeans and derived foods. The 12 main isoflavones were resolved in 10 min in two coupled monolithic columns working at 35 °C using a elution gradient of acidified water (0.1% acetic acid) and methanol (0.1% acetic acid) at a flow rate of 5 mL min−1. Retention time and relative area standard deviations were below 1% for all isoflavones. The method developed was successfully applied to several soy food samples and spiked samples. Total isoflavone concentration in sampled soy foods ranged from 34.28 mg L−1 to 4.29 mg g−1.  相似文献   

8.
A thermal stable composite membrane was prepared by interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on poly(phthalazinone ether amide) (PPEA) ultrafiltration membrane. The effect of reaction parameters on the performance of composite membranes was studied and optimized. The surface morphologies of the composite membrane and the substrate were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The rejection of optimized composite membrane for dyes Congo red (CGR) and Acid chrome blue K (ACBK), the molecular weight (MW) of which is over 400, was over 99.2%, with a flux at about 180 L m−2 h−1. While the rejection for NaCl was only 18.2% with a flux over 270 L m−2 h−1, when tested at 1.0 MPa 60 °C. The composite membrane was applied in the desalination-purification experiment of dye ACBK and NaCl mixed solution. The flux of the membrane increased obviously as the operation pressure and/or temperature increased, while the rejection for dye was constant and kept over 99.3%. The purification experiments were accomplished effectively at 1.0 MPa, 80 °C. Only after five rounds of desalination-concentration experiment, about 160 min, the salt mixed in dye solution was fully removed. The initial flux of the eighth cycle was about 254 L m−2 h−1, which was only 20 L m−2 h−1 lower than that of the first round. The rejection of the membrane was constant and kept over 99.3% through out the eight cycles of purification experiment.  相似文献   

9.
This paper developed a novel method, the rheological phase reaction method, to synthesize nanospherical Fe3BO6. The sizes and morphologies of products vary with the calcination temperatures. Spherical particles with a uniform size about 40 nm in a monodisperse state were obtained at 800 °C, while the spherical particles with a larger size of 100-500 nm were obtained at 900 °C. The electrochemical properties of these Fe3BO6 nanospheres were investigated. Sample synthesized at 800 °C delivers a high reversible capacity above 500 mAh g−1. Sample synthesized at 900 °C possesses relatively good cycleability with a capacity retaining of 376 mAh g−1 after 10 cycles. The measurement of electrochemical impedance spectra for the first time indicated that smaller Fe3BO6 nanoparticles intend to give higher impedance of solid-electrolyte interface layer and lower charge-transfer impedance after the first discharge. Additionally, it can be speculated that the increase of resistance charge-transfer is the possible reason for the capacity fading during cycling.  相似文献   

10.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

11.
In the present study, an analytical procedure was developed for the determination of short-chain fatty acids (SCFAs) in landfill leachate and municipal wastewater employing injection of aqueous samples to gas chromatograph with flame ionization detector (GC-FID). Chromatographic conditions such as a separation system, injection volume, oven temperature program were investigated and selected. With two columns, one with a polar (polyethylene glycol) and one with a non-polar (dimethylpolisiloxane) stationary phase, good separation of SCFAs, containing from 2 to 8 carbon atoms, was achieved. The sample volume was 2 μL and the temperature program 80 °C (30 s) then 7 °C min−1 to 220 °C (2 min). LOQs values were below 0.25 mg L−1. The concentrations of the acids in the landfill leachate studied ranged from 0.45 ± 0,059 (average ± extended uncertainty) mg L−1 for pentanoic acid to 15.2 ± 0.73 mg L−1 for ethanoic acid. Concentrations of SCFAs in the municipal wastewater were lower than LOQs.  相似文献   

12.
The synthesis of mesoporous silicon carbide by chemical vapor infiltration of dimethyl dichlorosilane into mesoporous silica SBA-15 and subsequent dissolution of the silica matrix with HF was investigated. The influence of the synthesis parameters of the composite material (SiC/SBA-15) on the final product (mesoporous SiC) was determined. Depending on the preparation conditions, materials with specific surface areas from 410 to 830 m2 g−1 and pore sizes between 2 and 10 nm with high mesopore volume (0.31-0.96 cm3 g−1) were prepared. Additionally, the thermal stability of mesoporous silicon carbide at 1573 K in an inert atmosphere (argon) was investigated, and compared to that of SBA-15 and ordered mesoporous carbon (CMK-1). Mesoporous SiC has a much higher thermal textural stability as compared to SBA-15, but a lower stability than ordered mesoporous carbon CMK-1.  相似文献   

13.
A microwave assisted wet digestion method for organoarsenic compounds and subsequent determination of total arsenic in aqueous, biological and sediment samples by means of flow injection hydride generation electrothermal atomic absorption spectrometry (FI-HG-ETAAS) is described. Sodium persulfate, sodium fluoride and nitric acid serve as digestion reagents, which allow a quantitative transformation of organoarsenic compounds to hydride forming species in a commercial microwave sample preparation system. The maximum operating pressures of the applied tetrafluorometoxil (TFM) liners are 75 bar (high pressure vessels) and 30 bar (medium pressure vessels), corresponding to maximum solution temperatures of 300 and 260 °C. For the investigated samples, digestion temperatures of 210-230 °C (medium pressure vessels) and 240-280 °C (high pressure vessels) were obtained.In medium pressure vessels, arsenic recovery from aqueous testing solutions of dimethylarsinic acid (DMA), phenylarsonic acid (PAA) and tetraphenylarsonium chloride (TPA) at initial concentrations of 100 and 10 μg l−1 is complete, even in the presence of an excess of organic carbon (potassium hydrogen phthalate, 2000 mg l−1) or fatty acids (linolenic acid 70%; linoleic acid ≈20-25%; Oleic acid ≈3%, 900-4500 mg l−1).Arsenic recovery from aqueous arsenobetaine (ASB) solutions with the same initial concentrations is also complete if high pressure vessels and a higher concentration of fluoride ions are used, whereas the addition of organic carbon (potassium hydrogen phthalate, 2000 mg l−1, fatty acids, 900-4500 mg l−1) leads to a decrease in arsenic recovery of about 2-5%. In all cases, residual carbon contents are close to the limit of detection for the applied analytical method (15 mg l−1).Results of arsenic analysis in reference standard materials revealed a significant dependence on the material’s nature (sediment samples, plant materials and seafood samples). Sediment samples and plant materials show recoveries for arsenic around 100% after a single-step digestion in medium pressure TFM liners. Seafood (fish/lobster/mussel samples) usually require either the use of high pressure vessels or a second digestion step, if medium pressure vessels are used.  相似文献   

14.
以碳球为模板,采用溶胶-凝胶法制备空心球状BiVO4,浸渍法制备CuO负载BiVO4.运用X射线衍射(XRD)、扫描电镜(SEM)、高分辨率透射电镜(HRTEM)、Brunauer-Emmett-Teller(BET)、塔菲尔(Tafel)、线性扫描(LSV)、光电转化效率(IPCE)、紫外-可见漫反射光谱(UV-Vis-DRS)等手段对催化剂进行表征.结果表明,空心球状BiVO4比表面积(10.24 m2?g-1)是无定型BiVO4(1.97 m2?g-1)的5.20倍.负载CuO后,与BiVO4形成p-n型异质结结构.其中,5%负载量的空心球状BiVO4具有最佳电化学性能,Tafel表征腐蚀电流密度(2.22μA?cm-2)为空心球状BiVO4(0.18μA?cm-2)的12.33倍,禁带宽度减小为2.30 eV.以甲苯为模型污染物研究催化剂对挥发性有机化合物(VOCs)的催化去除和矿化效果,5%CuO负载量的空心球状BiVO4光催化氧化能力最佳,可见光照6 h甲苯降解率达85.0%,矿化率达12.0%.  相似文献   

15.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

16.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

17.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   

18.
In this work, methodologies were developed to determine aluminum (Al), cadmium chromium and lead in drinking water by electrothermal atomic absorption spectrometry using permanent modifiers. No use of modifier, iridium, ruthenium, rhodium and zirconium (independently, 500 μg) were tested to each one analyte through the pyrolysis and atomization temperatures curves. As the matrix is very simple, did not had occurred problems with the background for all metals. The best results obtained for cadmium and chromium was with the use of rhodium permanent modifier. For lead and aluminum, the best choice was the use of zirconium. The selection for the modifier took into account the sensitivity, form of the absorption pulse and low atomization temperature (what contributes to elevate the useful life of the graphite tube). For aluminum using zirconium permanent, the best pyrolysis and atomization temperatures were respectively, of 1000 and 2500 °C with a characteristic mass (1% of absorbance, mo) of 19 pg (recommended of 20 pg). For cadmium, with use of rhodium the best temperatures for the pyrolysis and atomization were respectively of 400 and 1100 °C, with a symmetrical peak and with a mo of 1.0 pg (recommended of 1.0 pg). For chromium with rhodium permanent, the best temperatures for pyrolysis and atomization were respectively of 1000 and 2200 °C, with symmetrical peak and mo of 5.3 pg (recommended of 5.5 pg). For lead with zirconium permanent, the best temperatures for pyrolysis and atomization were of 700 and 2400 °C, with symmetrical peak and with mo of 30 pg (recommended of 20 pg). Water samples spiked with each one of the metals in four different levels inside of the acceptable values presented recoveries always close to 100%. The detection limits were of 0.1 μg l−1 for cadmium; 0.2 μg l−1 for chromium; 0.5 μg l−1 for lead and 1.4 μg l−1 for aluminum.  相似文献   

19.
Soil samples were collected from an antimony smelting site in Guangxi Zhuang Autonomous Region, China, at four locations characterized by different land usage, including two cultivated sites: one formerly cultivated and one uncultivated. Surface soils from all four sites were heavily polluted by toxic metals including antimony (Sb), lead (Pb) and arsenic (As), and their concentrations were 410-3330 mg·kg−1, 410-3690 mg·kg−1 and 200-460 mg·kg−1, respectively. In the uncultivated area metal levels were 1.4-6.2 times higher as compared to the formerly and currently agriculture land. Lower levels at the cultivated sites may have resulted from an accumulation of airborne particles by vegetation and lower contents in the surface soil. However, the elevated mercury (Hg) content may reflect both natural and anthropogenic origins in this smelting site. Soil-derived humic acid (HA) from the smelting site reacted directly with Sb (III) aqueous solutions with concentrations of 12, 71 and 143 mg·g−1. The maximum Sb (III) binding to the soil-derived HA was 253 μmol·g−1 (added concentration of 71 mg·g−1) and showed more binding (up to 50%) at lower Sb content.  相似文献   

20.
A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70 °C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min−1. The UV–vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices – Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50–9.09 mg kg−1 (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg−1 to 0.60 mg kg−1 (1.80 mg kg−1 for Fast Garnet) for standard solution and from 0.25 mg kg−1 to 1.00 mg kg−1 (2.50 mg kg−1 for Fast Garnet, 1.50 mg kg−1 for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5–107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real food constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号