首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH4 → CaOCH4 → [TS] → CaOH + CH3, CaO + CH4 → OCaCH4 → [TS] → HOCaCH3 → CaOH + CH3 or [TS] → CaCH3OH → Ca + CH3OH, and OCaCH4 → [TS] → HCaOCH3 → CaOCH3 + H or [TS] → CaCH3OH → Ca + CH3OH. The gas-phase methane–methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH3 and HCaOCH3, and the reaction pathway via the hydroxy intermediate (HOCaCH3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH3). The hydroxy intermediate HOCaCH3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH4. Meanwhile, these three product channels (CaOH + CH3, CaOCH3 + H and Ca + CH3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH3 and HOCaCH3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH3OH, which is precisely the reverse reaction of methane hydroxylation.  相似文献   

2.
Thermochemistry of the reaction between SrCO3 and SrCeO3, represented as
SrCO3(s) + SrCeO3(s) = Sr2CeO4(s) + CO2(g),  相似文献   

3.
To obtain a recyclable surface-enhanced Raman scattering (SERS) material, we developed a composite of Fe3O4\SiO2\Ag with core\shell\particles structure. The designed particles were synthesized via an ultrasonic route. The Raman scattering signal of Fe3O4 could be shielded by increasing the thickness of the SiO2 layer to 60 nm. Dye rhodamine B (RB) was chosen as probe molecule to test the SERS effect of the synthesized Fe3O4\SiO2\Ag particles. On the synthesized Fe3O4\SiO2\Ag particles, the characteristic Raman bands of RB could be observed when the RB solution was diluted to 5 ppm (1×10−5 M). Furthermore, the synthesized particles could keep their efficiency till four cycles.  相似文献   

4.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

5.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

6.
The title compound, Fc2(Ph)PS · I2, has been prepared and characterised in both the solid state and solution. Single crystal X-ray crystallography reveals that the adduct adopts a molecular charge-transfer structure in the solid state. Mössbauer spectroscopy confirms the presence of low spin Fe2+ but also indicates the presence of ca. 24% of an Fe3+ species. The electrochemistry of Fc2(Ph)PS · I2, Fc2(Ph)PS and Fc2(Ph)P has been studied using a combination of cyclic voltammetry and differential pulse voltammetry. The data for Fc2(Ph)PS · I2 show two redox processes, consistent with the sequential oxidation of the ferrocenyl groups to ferrocenium species.  相似文献   

7.
The vaporization of DyI3(s) was investigated in the temperature range between 833 and 1053 K by the use of Knudsen effusion mass spectrometry. The ions DyI2+, DyI3+, Dy2I4+, Dy2I5+, Dy3I7+, and Dy3I8+ were detected in the mass spectrum of the equilibrium vapor. The gaseous species DyI3, (DyI3)2, and (DyI3)3 were identified and their partial pressures determined. Enthalpies and entropies of sublimation resulted according to the second- and third-law methods. The following sublimation enthalpies at 298 K were determined for the gaseous species given in brackets: 274.8±8.2 kJ mol−1 [DyI3], 356.0±11.3 kJ mol−1 [(DyI3)2], and 436.6±14.6 kJ mol−1 [(DyI3)3]. The enthalpy changes of the dissociation reactions (DyI3)2=2 DyI3 and (DyI3)3=3 DyI3 were obtained as ΔdH°(298)=193.3±5.6 and 390.3±13.0 kJ mol−1, respectively.  相似文献   

8.
The characterisation of the initial devolatilisation products could provide important information for understanding synergistic effects and subsequently the formation routes leading to toxic organic compounds and soot during co-combustion. Initial devolatilisation characteristics of the fuels have been characterised following co-pyrolysis experiments. This paper investigates the devolatilisation behaviour during co-pyrolysis of pinewood together with one of three coals of different rank, lignite or high-volatile bituminous of different origin. A range of pyrolysis experiments has been performed over a temperature range from 400 to 900 °C using pyrolysis–GC–MS (py–GC–MS) and thermogravimetric analysis (TGA). Larger scale batch pyrolysis experiments of the hv bituminous coal–pine mixture have been performed enabling collection of the evolved tars. These tars have then been characterised by GC–MS and size exclusion chromatography (SEC). For these batch pyrolysis tests, synergy (non-additive behaviour) was observed and the blend pyrolysis oil contained a decrease in aromatics and an increase in phenols than would be expected for additive behaviour. The molecular weight distributions of the evolved tars also show non-additive behaviour. For the TGA experiments, additive behaviour was seen for all the coal–pine blends studied. Similarly, no obvious synergy was observed by py–GC–MS for the bituminous coal–pine blends, or for model compound–coal and coal–biomass component blends. Non-additive combustion behaviour is not easily explained by studying devolatilisation because of the difficulty in replicating the conditions of temperature profile and residence time experienced by the volatiles. Thus, conflicting behaviour is exhibited depending upon pyrolysis technique.  相似文献   

9.
Tetragonal PbSnF4 was prepared by precipitation method with Pb(NO3)2 and SnF2 aqueous solutions. The product was characterized using X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XFS), and the other chemical analyses. Tetragonal PbSnF4 exhibited the highest electric conductivity of 3.2 Sm−1 at 473 K in air as a fluoride ion conductor. We have investigated the possibility of COF2 formation using CO2 and F2 in an electrochemical cell with PbSnF4 as a solid electrolyte. At same time, we tried to produce an electric power from an electrochemical cell. This CO2/F2 electrochemical cell was constructed with a tetragonal PbSnF4 disk having Au electrodes. The electromotive force was about 0.9 V at room temperature for 0.1 MPa CO2/(0.01 MPa F2 + 0.09 MPa Ar). However, the short circuit current density was 0.24 A m−2, which was quite small. This current density was so small that no fluorocarbon compound was detected after 3 h discharge using FT-IR.  相似文献   

10.
A Na3V2(PO4)3 sample coated uniformly with a layer of 6 nm carbon has been successfully synthesized by a one-step solid state reaction. This material shows two flat voltage plateaus at 3.4 V vs. Na+/Na and 1.63 V vs. Na+/Na in a nonaqueous sodium cell. When the Na3V2(PO4)3/C sample is tested as a cathode in a voltage range of 2.7-3.8 V vs. Na+/Na, its initial charge and discharge capacities are 98.6 and 93 mAh/g. The capacity retention of 99% can be achieved after 10 cycles. The electrode shows good cycle performance and moderate rate performance. When it is tested as an anode in a voltage range of 1.0-3.0 V vs. Na+/Na, the initial reversible capacity is 66.3 mAh/g and the capacity of 59 mAh/g can be maintained after 50 cycles. These preliminary results indicate that Na3V2(PO4)3/C is a new promising material for sodium ion batteries.  相似文献   

11.
Modified LaB6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB6 particles on optical properties of LaB6/PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB6 particles were dispersed in MMA. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites.  相似文献   

12.
Starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives, BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors were prepared by a two-step spray pyrolysis (SP) method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectra were used to characterize the resulted BAM:Eu2+ phosphors. The obtained BAM:Eu2+ phosphor particles have spherical shape, submicron size (0.5-3 μm). The effects of process conditions of the spray pyrolysis, such as molecular weight and concentration of PEG, on the morphology and luminescence properties of phosphor particles were investigated. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.03 g/ml in the precursor solution. Moreover, the emission intensity of the phosphors increased with increasing of metal ion concentration in the solution. Compared with the BAM:Eu2+ phosphor prepared by citrate-gel method, spherical BAM:Eu2+ phosphor particles showed a higher emission intensity.  相似文献   

13.
We present a new set of V–V rate coefficients for vibrational levels 0–5 in H2 at 300 K, measured using a stimulated Raman–spontaneous Raman pump/probe apparatus. The measured rate of the non-resonant process, H2(v = 1) + H2(v = 1) → H2(v = 0) + H2(v = 2), is consistent with the previously reported experimental value of Kreutz et al. However, semi-classical predictions of such non-resonant processes, using the identical inter-molecular potential and methodology to that given by Cacciatore and Billing, results in rates which are too slow, by a factor of approximately 3. For the “resonant” V–V process, H2(v = 1) + H2(v = 0) → H2(v = 0) + H2(v = 1), the semi-classical rate is found to be too slow by an even larger factor, of approximately 30, compared to the experimental rate, but consistent with the previously reported experimental result of Farrow and Chandler. Further, unlike the semi-classical model prediction in which the (1, 1 → 2, 0) process rate is predicted to exceed that of the (1, 0 → 0, 1) process, the experimental data shows it to be a factor of approximately 2.5 less, suggesting that semi-classical methods that treat the rotational motion classically are unsuitable for the highly anharmonic H2 molecule. The ratio of pure rotation and rotation–vibration Raman cross sections for scattering from levels 0 and 1 is also determined, with results which agree with calculations of Schwartz and LeRoy, but are somewhat larger than previous experimental results of Cureton.  相似文献   

14.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

15.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   

16.
This paper analyzes the coal to char stages of char formation of six coals of different ranks by using Fourier transform infrared coupled w ith attenuated total reflectance(ATR-FTIR).The chars w ere obtained by coal pyrolysis carried out at temperature range of 450~700℃.The data obtained show s the pragmatic disappearance of the aliphatic hydrogen content w ith increasing char formation temperature.Numerical evaluation of the spectra enabled the determination of aromaticity,fa.The aromaticity w as found to be betw een 0.66~0.79 for lignite,0.75~0.90 for sub-bituminous,0.84~1.00 for low volatile bituminous,0.83~1.00 for high volatile bituminous,0.94~1.00 for semi-anthracite,and 0.97~1.00 for anthracite respectively.With increasing rank of coal samples,spectra exhibit rising aromaticity and enhanced condensation of aromatic rings,w hereas the aliphatic chain lengths decrease.  相似文献   

17.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

18.
(Liquid + liquid) equilibrium data are presented for four ternary systems of an alkane, or aromatic compound and ethyl(2-hydroxyethyl)dimethylammonium bis{(trifluomethyl)sulfonyl}imide (C2NTf2) at 298.15 K: [hexane + benzene + C2NTf2], [hexane + p-xylene + C2NTf2], and [hexane, or octane + m-xylene + C2NTf2]. The separation of aromatic hydrocarbons (benzene, or p-xylene, or m-xylene) from aliphatic hydrocarbons (hexane, or octane) is investigated by extraction with the ammonium ionic liquid. Selectivities and distribution ratios are discussed for these mixtures at constant temperature. The data were analysed and compared to those previously reported for other ionic liquids and especially for the system {hexane + benzene + [EMIM][NTf2]}. The nonrandom two liquid NRTL model was successfully used to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems.  相似文献   

19.
We demonstrate here the utility of polycarbonate membrane in preparing oxide particles of unusual shape and properties. Unlike the usual formation of nanowires or tubes using alumina templates, here, pyramidal shaped SnO2 particles with a preferred orientation along the (2 1 1) direction have been prepared using polycarbonate membranes. Simple impregnation of SnO2 sol into a polycarbonate membrane by sonication followed by calcination at 800 °C resulted in the formation of pyramidal shaped SnO2 particles. Compared to the alumina membrane the recovery of the particles from polycarbonate membrane is very simple. The sensor fabricated using such particles without any catalyst addition exhibited 64% sensitivity towards 500 ppm butane at 500 °C with a recovery time of 27 s. This method could be used as a simple technique to prepare oxide particles of different size and shape for diverse applications.  相似文献   

20.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号