首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of UV radiation (UVR) on juvenile Atlantic salmon (Salmo salar) was assessed by measuring the fatty acid (FA) profiles of muscle, dorsal and ventral skin, and ocular tissues following 4-month long exposures to four different UVR treatments in outdoor rearing tanks. Fish were fed two different diets (Anchovy- and Herring-oil based) that differed in polyunsaturated fatty acid (PUFA) concentrations. Anchovy-fed salmon had higher concentrations of ALA (alpha-linoleic acid; 18:3n-3), EPA (eicosapentaenoic acid; 20:5n-3) and DPA (docosapentaenoic acid, 22:5n-3) in their muscle tissues than fish fed the Herring feed. Fish subjected to enhanced UVB levels had higher concentrations of LIN (linolenic acid, 18:2n-6) and ALA, total omega-6 FA and SAFA (saturated fatty acids) in their tissues compared with fish in reduced UV treatments. Concentrations of ALA, LIN, GLA (gamma-linolenic acid; 18:3n-6), EPA, PUFA and total FA were higher in ventral skin of fish exposed to enhanced UVB compared with fish in reduced UV treatments. Salmon exposed to reduced UV weighed more per-unit-length than fish exposed to ambient sunlight. The FA profiles suggest that fish exposed to UV radiation were more quiescent than fish in the reduced UV treatments resulting in a buildup of catabolic substrates.  相似文献   

2.
The use of genetically modified plants offers unique opportunities to study the role of specific flavonoids in plant UVB protection. Along with a parental wild-type Mitchell Petunia, two transgenic lines with altered flavonoids were also examined; Lc with enhanced levels of antho-cyanins due to the action of a maize flavonoid regulatory gene Leaf color, and AFLS that carries an antisense fla-vonol synthase construct and is known to have reduced flavonol levels in flowers. All three lines were grown in near ambient sunlight, sunlight lacking UVB (280–320 nm) radiation and sunlight with 25% added UVB. Ultra-violet-B radiation induced significant reductions in the rates of leaf expansion and seedling growth in all three lines. The presence of anthocyanins did not appear to afford Lc plants any special protection from UVB. Ul-traviolet-B treatment induced increases in total flavonol content in young plants of all three lines, and this effect decreased with increasing leaf age. Notably, increasing UVB levels led to an increase in the ratio of quercetin: kaempferol with all three cultivars. The AFLS transgenic, contrary to expectations based on its genetic construction, had normal levels of flavonols in the leaves and the highest Q:K ratio of the three cultivars. This transgenic was the least susceptible to UVB, which may indicate an enhanced protective role for quercetin. Because both quercetin and kaempferol have similar UVB screening properties, quercetin may exert this role by other means.  相似文献   

3.
Carp (Cyprinus carpio) were repeatedly exposed to 0, 60, 120 and 240 mJ/cm2 ultraviolet B (UVB) radiation three times in 1 week (short-term exposure) or 12 times in 4 weeks (long-term exposure). The effect of UVB on the functioning of the carp immune system was studied on day 2 after the final irradiation. After short-term UVB exposure, the whole-blood respiratory burst and cytotoxic activity were markedly enhanced, with parallel responses in both the number of circulating granulocytes and in the plasma cortisol concentration of the fish. These changes were not detectable after long-term exposure. The respiratory burst by head kidney granulocytes was suppressed dose dependently after both exposures, but cytotoxic activity was not affected. Exposure to UVB also modulated lymphocyte functions: nonstimulated and PHA-stimulated proliferation of head kidney lymphocytes in vitro was enhanced by both short-term and long-term exposure. LPS-stimulated proliferation was not affected by exposure nor was the number of immunoglobulin-secreting cells in the head kidney. In long-term exposure, the highest dose reduced the level of plasma IgM. This study indicates that UVB irradiation induces immunomodulation in the blood and head kidney of the carp and that the effects of short- and long-term exposure differ from each other. The results emphasize the potentially harmful impact of increased solar UVB radiation on fish immune functions.  相似文献   

4.
Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels.  相似文献   

5.
Comparative effects of UVA and UVB irradiation on the immune system of fish   总被引:2,自引:0,他引:2  
Aquatic organisms can be harmed by the current levels of solar ultraviolet radiation. We have recently shown that exposure of fish to UVB irradiation alters the functioning of the fish immune system, but the effects of UVA radiation are unknown. The present study continues this work by characterizing UVA irradiation-induced immunological changes in fish. Roach, a cyprinid fish, were exposed to a single dose of either UVA (3.6 J/cm2) or UVB (0.5 J/cm2) irradiation. Both irradiations suppressed transiently mitogen-stimulated proliferation of blood lymphocytes. UVA, but not UVB, decreased hematocrit, plasma protein, and plasma immunoglobulin levels and increased the proportions of blood cells classified as unidentified leukocytes, possibly consisting of UVA-damaged lymphocytes. UVB, but not UVA, altered the functioning of head kidney and blood phagocytes, induced granulocytosis and lymphocytopenia in the blood and increased plasma cortisol concentration. These results imply that both UVA and UVB are potent modulators of the immune defence of fish.  相似文献   

6.
Ultraviolet (UV) radiation from sunlight causes skin cancer and inhibits priming of the immune system during vaccination. However the dose related effects of the different components of sunlight (UVA and UVB) are complex and require further investigation. Using ovalbumin as a model protein vaccine with saponin as adjuvant we show that both UVA and UVB can suppress the DTH response to a poorly immunogenic protein. Increasing doses of UVB induced increased levels of immunosuppression and tolerance. UVA however, caused a bi-phasic dose response with intermediate but not low or high doses causing primary immunosuppression. No dose of UVA caused significant tolerance. Similar results were observed in both C57BL/6 and Balb/c mice. Our data confirms the complex immunomodulatory dose effects of UVA and UVB for a protein antigen, and shows that both UVB and UVA can suppress immunity induced by a protein with adjuvant. This highlights the importance of considering sun exposure patterns in the future success of both preventing skin cancer development and enhancing vaccination regimes.  相似文献   

7.
Abstract— Different cultivars of maize ( Zea mays L.) originating from Central and South Europe were grown from June to September 1994 for 16 weeks in two greenhouses covered with different UVB-absorbing (280–320 nm) plastic foils. Using the ambient UVB radiation level of a southern location (Portugal, 38.7°N) in one of the greenhouses as an enhanced radiation compared to the reduced radiation in the second greenhouse, an increase of about 12% of UVB was simulated. Six of the eight cultivars examined showed significant reductions in height of up to 18.9% at all developmental stages under increased UVB. In contrast to this, the fresh and dry weight as well as the leaf area was reduced under UVB only at early developmental stages, but with ongoing development the UVB stressed plants caught up. The total content of absorbing compounds of the maize cultivars was completely unaffected by UVB. A flowering delay up to a maximum of 5 days was observed under higher UVB in several cultivars. Probably due to this delay in the cob development the yield decreased to 27.7% under higher UVB at the first harvest after 12 and 14 weeks, whereas at the second harvest after 14 and 16 weeks yield reduction levelled off.  相似文献   

8.
This study determined the sensitivity of vaccinia virus, an orthopox virus commonly used as a surrogate for variola virus (etiological agent of smallpox), exposed to UVB radiation emitted by a solar simulator, or to direct natural sunlight. The data obtained indicate that: (1) the virucidal effect of natural sunlight can be mimicked adequately by an artificial light source with similar spectral characteristics in the UVB, (2) viral sensitivity to UVB or to solar radiation can be correlated with experimental data previously obtained with UVC, (3) the correlation factor between virus inactivation by solar radiation (measured at 300 ± 5 nm) and by UVC (254 nm) is between 33 and 60, and (4) the sensitivity of viruses either dry on glass surfaces or in liquid suspension is similar when in the presence of similar amounts of cellular debris and growth media. The findings reported in this study should assist in estimating the threat posed by the persistence of virus during epidemics or after an accidental or intentional release.  相似文献   

9.
Abstract— The increase in UV-B radiation(290–320 nm) penetrating to the earth's surface as a result of the chemical depletion of the stratospheric ozone layer is an important environmental concern. In most studies using artificial UV-B sources, the determination of enhanced UV-B radiation effects on plants relies on equivalent UV-A radiation(320–400 nm) from the experimental UV-B fluorescent lamp source, filtered with either cellulose diacetate (CA) to create UV-B treatments, or with type S Mylar or polyester (PE) to create controls (no UV-B). The spectral irradiance in the UV-A was measured in the dark below lamps at two daily UV-B irradiance levels (14.1 and 10.7 W m-2) with CA and PE at two ages. Highly significant differences in UV-A radiation (P 0.01) were measured below the treatment/control pairs at both fluence rates and filter ages. Filter aging was observed, which reduced the UV-A irradiance, especially for PE. The total daily ambient UV-A irradiance was also determined in the glasshouse at three seasons: the fall equinox, summer and winter, from which the total daily UV-A (lamp + ambient) irradiances were calculated. The addition of low to moderate ambient irradiance removed the treatment/control differences in the longwave UV-A(350–400 nm); however, the treatment/contro1 differences remained in the shortwave UV-A(320–350 nm), which was restricted by the glass, and in the total UV-A. The treatment/control differences persisted in the shortwave UV-A for the higher irradiance level, even under high summer ambient light. Also, spectral ratios (UVB:UV-A and shortwave: longwave UV-A) for all treatment groups decreased as the ambient UV-A radiation increased. Therefore, a range of experimental conditions exist where PE-covered lamps do not provide adequate control for UV-A irradiance, relative to the CA treatment, for glasshouse/growth chamber experiments. Potential complications in the interpretation of plant response exist for UV-B experiments conducted under low ambient light conditions (e.g. growth chambers; glasshouse in winter) or high daily UV-B irradiances (e.g. 14 kJ m-2) for those plant responses that are sensitive to UV-A radiation.  相似文献   

10.
Abstract— Sulfamethoxazole (SMX) in its nonionized form in aqueous solution has ultraviolet (UV) absorption that is maximal at 268 nm but extends through the ultraviolet-B (UVB) region. It was found to be extremely susceptible to photodegradation when exposed to artificial UV radiation through a Pyrex filter or to unfiltered natural sunlight. The SMX anion was more stable. The quantum yields of the photodegradation of both forms were determined by use of monochromatic light and ferrioxalate chemical actinometry, the values of 0.47 (pH 3.0) and 0.084 (pH 9.0) at the maximum absorption wavelengths (268 and 257 nm, respectively) being obtained. Using literature data on sunlight intensity, the photochemical shelf-life of SMX solutions exposed to direct sunlight was calculated for Sydney (latitude 33.5°S) as a function of season of the year and verified experimentally. A fixed correlation was established between the rate constant for SMX degradation and UVB intensity measured by a radiometer, suggesting the capacity of this chemical system to monitor changes in the UVB region of sunlight.  相似文献   

11.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

12.
Roach ( Rutilus rutilus ) were irradiated with a single dose of ultraviolet B (UVB) radiation (0.4 J/cm2) in order to study the effects of UVB on the nonspecific immune defense mechanisms of fish. Neutrophils and macrophages were isolated from the head kidney of fish on days 1–14 postirradiation. Both random and directed migration of neutrophils, studied by migration under agarose assay, were suppressed on day 1 after UVB irradiation. The respiratory burst of phorbol 12-myristate 13-acetatestimulated neutrophils and macrophages was also suppressed at days 1 and 2 after UVB irradiation. The suppression of migration and respiratory burst were restored or the responses were even enhanced later, but on the other hand spontaneous cytotoxicity of neutrophils toward 51chromium-labeled K562 target cells stayed suppressed throughout the 14 day follow-up. This study indicates that UVB radiation has the potential to suppress the functioning of phagocytes and to compromise the immune system of fish.  相似文献   

13.
Significant Reduction of UVB Caused by Smoke from Biomass Burning in Brazil   总被引:1,自引:0,他引:1  
Abstract— Solar UVB radiation, total ozone and the aerosol optical thickness (AOT) of the atmosphere were measured at various sites in Brazil during the burning season of 1995. Smoke from biomass burning caused very significant AOT and up to an 81% reduction in UVB at Cuiabd, hundreds of kilometers from the most widespread burning. Little or no smoke was apparent upwind of the major burning regions at and near Manaus, and UVB was close to the expected values. There is an increased incidence of respiratory, cardiopulmonary and other diseases associated with severe air pollution, but the responsible biological mechanisms are unknown. The bactericidal effects of solar UVB are well known, and significantly reduced UVB resulting from severe air pollution in regions where UVB levels are ordinarily high might enhance the survivability of pathogenic organisms in air and water and on surfaces exposed to sunlight.  相似文献   

14.
Ultraviolet radiation can inhibit immune responses locally as well as systemically. Such effects have been measured in animals and humans exposed to ultraviolet B (wavelength 280-315 nm) (UVB) and ultraviolet A (315-400 nm) (UVA). The precise wavelength dependence is important for the identification of possible molecular targets and for assessments of risk of different artificial UV sources and solar UV. In such analyses, it is commonly assumed that radiation energy from each wavelength contributes to the effect independent of the other wavelengths. Here we show that this assumption does not hold good. In the present study, it was investigated whether exposure to broadband UVA or longwave ultraviolet A 1 (340-400 nm) (UVA 1) prior to the standard immunosuppressive UVB protocol might modulate the immunosuppressive effects induced by UVB. Preexposure to broadband UVA or longwave UVA 1, 1 day prior to the standard immunosuppressive UVB protocol, inhibited the UVB-induced suppression of delayed type hypersensitivity (DTH) to Listeria monocytogenes significantly. This effect was not associated with restoring the number of interleukin (IL-12)-positive cells in the spleen. Since isomerization of trans-urocanic acid (UCA) into the immunosuppressive cis-UCA isomer plays a crucial role in UVB-induced immunomodulation, in a second set of experiments it was investigated whether immunosuppression induced by cis-UCA might also be downregulated by preexposure to UVA. Animals were exposed to broad-band UVA or longwave UVA 1 prior to application of an immunosuppressive dose of cis- or trans-UCA as a control. Both UVA and UVA 1 appear to inhibit the cis-UCA-induced systemic immunosuppression (DTH and IL-12) to L. monocytogenes. These studies clearly show that UVA radiation modulates both UVB and cis-UCA-induced immunomodulation. In general, our studies indicate that both broadband UVA and longwave UVA 1 could induce modulation of UVB and cis-UCA-induced immunomodulation. As sunlight contains both UVA and UVB radiation the balance between these two radiations apparently determines the net immunomodulatory effect.  相似文献   

15.
Solar irradiation of a panel of human cell lines revealed three phenomena relevant to understanding the biological role of melanin; a heavily melanised melanoma line (MM418) was considerably more resistant to solar killing compared with HeLa and amelanotic melanoma cells of similar size and DNA content; MM418 cells were also resistant to killing by artificial UVB and by hydrogen peroxide generated in situ with extracellular glucose oxidase; and no difference in survival between the cell lines was found using 254 nm UV or gamma radiation. MM418 cells were resistant to sunlight when irradiated as attached monolayers but not when irradiated in suspension. Further studies showed that resistance to solar radiation in MM418 cells was not due to less DNA damage, as judged by inhibition of semiconservative DNA synthesis, or to enhanced constitutive or induced repair determined by reactivation of irradiated adenovirus. These results indicate that melanisation protects human cells from solar UVB in vitro and that the mechanism is associated with protection from hydrogen peroxide-type damage rather than direct shielding of DNA.  相似文献   

16.
The entomopathogenic hyphomycete Metarhizium anisopliae has been used in programs of agricultural pest and disease vector control in several countries. Exposure to simulated solar radiation for a few hours can completely inactivate the conidia of the fungus. In the present study we determined the effect of exposures to full-spectrum sunlight and to solar ultraviolet A radiation at 320-400 nm (UVA) on the conidial culturability and germination of three M. anisopliae strains. The exposures were performed in July and August 2000 in Logan, UT. The strains showed wide variation in tolerance when exposed to full-spectrum sunlight as well as to UVA sunlight. Four-hour exposures to full-spectrum sunlight reduced the relative culturability by approximately 30% for strain ARSEF 324 and by 100% for strains ARSEF 23 and 2575. The relative UV sensitivity of the two more sensitive strains was different under solar UV from that under ultraviolet B radiation at 280-320 nm (UVB) in the laboratory. Four-hour exposures to solar UVA reduced the relative culturability by 10% for strain ARSEF 324, 40% for strain ARSEF 23 and 60% for strain ARSEF 2575. Exposures to both full-spectrum sunlight and UVA sunlight delayed the germination of the surviving conidia of all three strains. These results, in addition to confirming the deleterious effects of UVB, clearly demonstrate the negative effects of UVA sunlight on the survival and germination of M. anisopliae conidia under natural conditions. The negative effects of UVA in sunlight also emphasize that the biological spectral weighting functions for this fungus must not neglect the UVA wavelengths.  相似文献   

17.
18.
A series of three outdoor mesocosm experiments was undertaken in Rimouski (Canada), Ubatuba (Brazil) and Ushuaia (southern Argentina) to examine the effects of lamp-enhanced UV-B (280-320 nm) on phytoplankton communities isolated from seawater at each site. Detailed pigment composition was used to identify these communities. Each experiment compared three replicated UV-B treatments, consisting of natural sunlight conditions (NUVB), low-level UV-B enhancement corresponding to local 30% ozone depletion (LUVB) and high-level enhancement corresponding to 60% ozone depletion (HUVB). Each mesocosm (ca 2 m deep) was mixed continuously (turnover time, ca 1.3 h) and samples were obtained daily over 7-10 days. In Rimouski a large diatom bloom occurred during the first week. Repeated-measures analysis of variance (RM-ANOVA), with time as the repeated factor, showed slight but statistically significant increases in the chlorophyll (Chl) a level with the HUVB treatment, which were especially obvious over the last 3 days of the experiment. A large decrease in grazers (ciliates) that was observed concurrently with this treatment is the most likely explanation for the increase in Chl a level. The lack of negative effect on algal biomass by enhanced UV-B is attributed to the mixing inside the mesocosms and to the relatively low UV-B penetration. In Ubatuba levels of most pigments decreased over time, particularly fucoxanthin, Chl c3 and alloxanthin. The RM-ANOVA showed no effect of the UV-B treatments, except for Chl c3, which had significantly lower concentrations under natural UVB conditions, indicating that enhanced UV-B directly or indirectly favored Chl c3 algae (likely prymnesiophytes). Although particulate organic carbon concentration was significantly larger during HUVB treatment than during the other treatments, Chl a was unaffected, suggesting that enhanced UV-B favored heterotrophs. Lack of algal growth during this experiment was attributed to low nutrient concentrations (which were the lowest of the three sites), high irradiances (which were the highest noon incident photosynthetically available radiation and UV of the three sites) and UV-B penetration down to the bottom of the mesocosms. In Ushuaia a small bloom took place over the first 5 days. The RM-ANOVA showed no overall effect of the UV-B treatments for any of the pigments examined but on the last 3 days of the experiment several green algae-type pigments, such as Chl b and siphonein, showed increased concentrations under the HUVB treatment. UV-B enhancement hence favored green algae, as seen from the stronger increase over time in the ratio of Chl b to Chl a associated with the HUVB treatment. UV-B enhancement also seemed to cause a slight decrease in physiological condition, because the relative concentration of chlorophyllide a and some pheophorbides that may be the product of dying algae increased during the HUVB treatments in Ubatuba and particularly in Ushuaia (where UV-B also penetrated to the bottom of mesocosms). For all three sites changes in phytoplankton biomass due to the UV-B treatments were minor, even though UV-B enhancement was important. This study indicates that effects of enhanced UV-B on the community structure of both phytoplankton and their grazers are potentially more important than effects on overall algal biomass.  相似文献   

19.
In this report, a number of physiological aspects was examined during developmental growth of maize seedling's mesocotyl. It was found that ultraviolet B (UVB) radiation was able to significantly induce nitric oxide synthase (NOS) activities and speedup the release of apparent nitric oxide (NO) of mesocotyl and that exogenous NO donor's rhizospheric treatments may mimic the responses of the mesocotyl to UVB radiation, such as the inhibition of mesocotyl elongation, the decrease in exo- and endoglucanase activities and the increase in protein content of cell wall of mesocotyl. When the seedlings were treated with N-nitro-L-arginine, an inhibitor of NOS, the mesocotyl elongation was promoted, the exo- and endoglucanase activities were raised and the protein content was reduced. However, under UVB radiation, the effects of exogenous NO on several physiological aspects of mesocotyl were similar to those of exogenous reactive oxygen species (ROS) eliminator, N-acetyl-cysteine. All the physiological changes were associated with either the exogenous NO supply or the activities of NOS in plant. Accordingly, it is assumed that reduction in mesocotyl length caused by UVB radiation was possibly achieved through modification of the chemical properties of the cell wall polysaccharides, which was induced by NO and ROS synergically mediated changes in exo- and endo-beta-D-glucanases activities in cell walls, and NO was one of the main signaling molecule of UVB radiation in inhibiting mesocotyl elongations. So NO might function as both a second messenger and an antioxidant of UVB radiation during developmental growth of the mesocotyl.  相似文献   

20.
Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280–315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280–400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号