首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe the construction of explicit general linear methods of order p and stage order q=p with s=p+1 stages which achieve good balance between accuracy and stability properties. The conditions are imposed on the coefficients of these methods which ensure that the resulting stability matrix has only one nonzero eigenvalue. This eigenvalue depends on one real parameter which is related to the error constant of the method. Examples of methods are derived which illustrate the application of the approach presented in this paper.  相似文献   

2.
The standard algebraic stability condition for general linear methods (GLMs) is considered in a modified form, and connected to a branch of Control Theory concerned with the discrete algebraic Riccati equation (DARE). The DARE theory shows that, for an algebraically stable method, there is a minimal G-matrix, G *, satisfying an equation, rather than an inequality. This result, and another alternative reformulation of algebraic stability, are applied to construct new GLMs with 2 steps and 2 stages, one of which has order p=4 and stage order q=3. The construction process is simplified by method-equivalence, and Butcher’s simplified order conditions for the case pq+1.   相似文献   

3.
We describe the construction of explicit Nordsieck methods of order p and stage order q = p with large regions of absolute stability. We also discuss error propagation and estimation of local discretization errors. The error estimators are derived for examples of general linear methods constructed in this paper. Some numerical experiments are presented which illustrate the effectiveness of proposed methods.  相似文献   

4.
We describe the search for algebraically stable Nordsieck methods of order p = s and stage order q = p, where s is the number of stages. This search is based on the theoretical criteria for algebraic stability proposed recently by Hill, and Hewitt and Hill, for general linear methods for ordinary differential equations. These criteria, which are expressed in terms of the non-negativity of the eigenvalues of a Hermitian matrix on the unit circle, are then verified computationally for the derived Nordsieck methods of order p ? 2.  相似文献   

5.
In the present paper, we study a class of linear approximation methods for solving semi-linear delay-reaction–diffusion equations with algebraic constraint (SDEACs). By combining a fourth-order compact difference scheme with block boundary value methods (BBVMs), a class of compact block boundary value methods (CBBVMs) for SDEACs are suggested. It is proved under some suitable conditions that the CBBVMs are convergent of order 4 in space and order p in time, where p is the local order of the used BBVMs, and are globally stable. With several numerical experiments for Fisher equation with delay and algebraic constraint, the computational effectiveness and theoretical results of CBBVMs are further illustrated.  相似文献   

6.
We investigate the class of general linear methods of order p and stage order q=p for the numerical solution of Volterra integral equations of the second kind. Construction of highly stable methods based on the Schur criterion is described and examples of methods of order one and two which have good stability properties with respect to the basic test equation and the convolution one are given.  相似文献   

7.
Linear multistep methods (LMMs) are written as irreducible general linear methods (GLMs). A-stable LMMs are shown to be algebraically stable GLMs for strictly positive definite G-matrices. Optimal order error bounds, independent of stiffness, are derived for A-stable methods, without considering one-leg methods (OLMs). As a GLM, the OLM is shown to be the transpose of the LMM. For A-stable methods, the LMM G-matrix is the inverse of the OLM G-matrix. Examples of G-symplectic LMMs are given. AMS subject classification (2000) 65L20  相似文献   

8.
We consider convergence of the covolume or finite volume element solution to linear elliptic and parabolic problems. Error estimates and superconvergence results in the Lp norm, 2 ≤ p ≤ ∞, are derived. We also show second‐order convergence in the Lp norm between the covolume and the corresponding finite element solutions and between their gradients. The main tools used in this article are an extension of the “supercloseness” results in Chou and Li [Math Comp 69(229) (2000), 103–120] to the Lp based spaces, duality arguments, and the discrete Green's function method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 463–486, 2003  相似文献   

9.
We describe the construction of explicit Nordsieck methods with s stages of order p = s − 1 and stage order q = p with inherent quadratic stability and quadratic stability with large regions of absolute stability. Stability regions of these methods compare favorably with stability regions of corresponding general linear methods of the same order with inherent Runge–Kutta stability.  相似文献   

10.
This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.  相似文献   

11.
A comprehensive linear stability analysis of splitting methods is carried out by means of a 2×2 matrix K(x) with polynomial entries (the stability matrix) and the stability polynomial p(x) (the trace of K(x) divided by two). An algorithm is provided for determining the coefficients of all possible time-reversible splitting schemes for a prescribed stability polynomial. It is shown that p(x) carries essentially all the information needed to construct processed splitting methods for numerically approximating the evolution of linear systems. By conveniently selecting the stability polynomial, new integrators with processing for linear equations are built which are orders of magnitude more efficient than other algorithms previously available. This paper is dedicated to Arieh Iserles on the occasion of his 60th anniversary.  相似文献   

12.
In this paper, we study diagonally implicit Runge-Kutta-Nyström methods (DIRKN methods) for use on parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-Kutta-Nyström methods (corrector methods). The number of iterations is chosen such that the method has the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of orderp withs * (p) sequential, singly diagonal-implicit stages wheres *(p)=[(p+1)/2] ors * (p)=[(p+1)/2]+1,[°] denoting the integer part function.These investigations were supported by the University of Amsterdam with a research grant to enable the author to spend a total of two years in Amsterdam.  相似文献   

13.
In this paper we derive high order implicit difference methods for large systems of ODE. The methods are based on the deferred correction principle, yielding accuracy of order p by applying the trapezoidal rule p/2 times in each timestep. Numerical experiments demonstrate the efficiency of the method.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if ans-stage SRK contains Stratonovich integrals up to orderp then the strong order of the SRK cannot exceed min{(p+1)/2, (s−1)/2},p≥2,s≥3 or 1 ifp=1.  相似文献   

15.
Aubry and Chartier introduced (1998) the concept of pseudo-symplecticness in order to construct explicit Runge-Kutta methods, which mimic symplectic ones. Of particular interest are methods of order (p, 2p), i.e., of orderp and pseudo-symplecticness order 2p, for which the growth of the global error remains linear. The aim of this note is to show that the lower bound for the minimal number of stages can be achieved forp=4 andp=5.  相似文献   

16.
Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper. This work was supported by National Natural Science Foundation of China (Grant No. 10871164), the Natural Science Foundation of Hunan Province (Grant No. 08JJ6002), and the Scientific Research Fund of Changsha University of Science and Technology (Grant No. 1004259)  相似文献   

17.
In this article, a one parameter family of discontinuous Galerkin finite volume element methods for approximating the solution of a class of second‐order linear elliptic problems is discussed. Optimal error estimates in L2 and broken H1‐ norms are derived. Numerical results confirm the theoretical order of convergences. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

18.
This paper is devoted to a study of nonlinear stability of general linear methods for the numerical solution of delay differential equations in Hilbert spaces. New stability concepts are further introduced. The stability properties of (k,p,q)-algebraically stable general linear methods with piecewise constant or linear interpolation procedure are investigated. We also discuss stability of linear multistep methods viewed as a special subset of the class of general linear methods.  相似文献   

19.
In this paper a class of polynomial interior-point algorithms for horizontal linear complementarity problem based on a new parametric kernel function, with parameters p[0,1] and σ≥1, are presented. The proposed parametric kernel function is not exponentially convex and also not strongly convex like the usual kernel functions, and has a finite value at the boundary of the feasible region. It is used both for determining the search directions and for measuring the distance between the given iterate and the μ-center for the algorithm. The currently best known iteration bounds for the algorithm with large- and small-update methods are derived, namely, and , respectively, which reduce the gap between the practical behavior of the algorithms and their theoretical performance results. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p,σ and θ.  相似文献   

20.
Parallel multistep hybrid methods (PHMs) can be implemented in parallel with two processors, accordingly have almost the same computational speed per integration step as BDF methods of the same order with the same stepsize. But PHMs have better stability properties than BDF methods of the same order for stiff differential equations. In the present paper, we give some results on error analysis of A(α)-stable PHMs for the initial value problems of ordinary differential equations in singular perturbation form. Our convergence results are similar to those of linear multistep methods (such as BDF methods), i.e. the convergence orders are equal to their classical convergence orders, and no order reduction occurs. Some numerical examples also confirm our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号