共查询到18条相似文献,搜索用时 43 毫秒
1.
以聚乙烯吡咯烷酮(PVP)与聚碳硅烷(PCS)为原料,利用静电纺丝法制得PCS/PVP复合纤维,通过空气交联,氩气(Ar)气氛下高温(1000~1400 ℃)处理以及空气中500 ℃除碳,最终得到碳化硅(SiC)纤维.利用场发射扫描电镜(FE-SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱(FT-IR)及X射线光电子能谱(XPS)等对所得纤维进行形貌、微观结构和成分分析,并研究了不同处理温度对SiC纤维结构和形貌的影响.结果表明,利用静电纺丝法可以得到质量较好的SiC纤维,热处理温度为1000 ℃和1200 ℃时得到无定形的SiC纤维,热处理温度为1400 ℃时可以得到结晶较好的β-SiC纤维. 相似文献
2.
3.
以无水氯化铝为原料,聚乙烯吡咯烷酮(PVP)为助纺剂,无水乙醇为溶剂,采用同轴静电纺丝法制备出氧化铝凝胶/PVP前驱体纤维,经1200℃煅烧后得到仿生多孔氧化铝纤维.系统研究了内外液流速以及PVP用量对多孔氧化铝纤维物相和孔结构的影响.结果表明,适当加大内液流速纤维逐渐出现仿生多孔结构,内液流速过大则会导致纤维多孔结构破裂消失.随着外液流速增加,纤维中的孔结构数量和孔径逐渐减小.增加PVP用量纤维直径增大,孔结构数量及孔径也会减小.当内液流速为0.1 mL/h,外液流速为1.0 mL/h,PVP用量为0.5g时,纤维为高纯α-Al203相,纤维表面光滑、连续,具有明显的仿生多孔结构. 相似文献
4.
通过静电纺丝法成功制备出CuO/ZnO多孔复合纳米纤维.对材料的气敏性能进行测试,结果表明:Cu的引入可以有效降低材料的工作温度和提高材料对乙醇气体的选择性和灵敏度.随着Cu含量的增加,材料对乙醇气体的灵敏度先增加后降低,其中CuO/ZnO(Cu∶ Zn=1:10)对乙醇的灵敏度和选择性最佳.最后,对复合纳米纤维材料的敏感机理进行了研究,并初步探索了引入Cu后材料工作温度降低和灵敏度增加的原因.本项工作有助于开发新型高效的酒精传感器和拓宽复合纤维材料的实际应用. 相似文献
5.
采用醋酸镍与钛酸丁酯为前驱体制备壳层纺丝液,芯层选用芝麻油,通过同轴静电纺丝技术,制得醋酸镍-钛酸丁酯/PVP复合纤维,在550℃烧结2h后,得到TiO2/NiO复合中空纳米纤维.研究不同内外推进速度比对复合纤维中空结构的影响,采用XRD对样品的组成进行表征,通过SEM和TEM对样品形貌进行观察,并检测样品在紫外光照射下对亚甲基蓝的催化降解率.结果表明:制得的TiO2/NiO复合中空纳米纤维平均直径为111.6±57.2nm,当内外推进速度比为1∶6时复合纤维的中空结构良好.在90 min紫外灯照射后,对浓度为0.4 mg/L的亚甲基蓝分解率为82.1;,较TiO2纳米纤维和TiO2/NiO复合纳米纤维分别提高了57.2;和13.9;. 相似文献
6.
以紧密堆积的三级配SiC颗粒(粒径为325 μm、212 μm、80 μm,质量比为17∶7∶1)为基础配方,将Owt;、1wt;、2wt;、3wt;和4wt;且粒径为5μm的SiC微粉添加到SiC耐磨材料中,经1600℃保温3h烧制,研究了SiC微粉添加量对SiC耐磨材料结构和性能的影响.结果表明:SiC微粉可促进SiC耐磨材料的烧结致密化,并改善其力学性能,当其添加量为3wt;时,试样的综合性能较优,其体积密度和显气孔率分别为2.63 g/cm3和7.62;,硬度、抗折强度和磨损量分别为2458 HV、183 Mpa和0.26 g/min.SiC耐磨材料烧结性能和力学性能的提高可归因子SiC微粉充填在SiC颗粒间,缩短了扩散传质路径,且较小粒径的SiC微粉具有较大的表面能,烧结时易于晶粒重排,保证了烧结网络的连续性,增大了颗粒间的结合程度. 相似文献
7.
8.
以三乙醇胺(TEA)和二水乙酸锌(Zn(CH3COO)2·2H2O)为原料,采用化学浴沉积法制备多级结构ZnO微球,并将获得的多级结构ZnO微球粉应用于染料敏化太阳能电池(DSSCs)光阳极.主要研究了TEA量和反应时间对产物形貌和电池性能的影响.采用SEM和XRD分析对多级结构ZnO微球进行形貌和物相表征,采用Ⅰ-Ⅴ测试仪和电化学工作站对电池性能进行了分析.结果表明:反应温度80℃,反应时间2h,TEA/水为0.15时所制备的多级结构ZnO微球粉组装成电池性能最佳,其光电转化率为3.18;,开路电压为0.64V,短路电流为9.36 mA·cm-2,填充因子0.53. 相似文献
9.
以SiC纳米纤维为传热介质,在其表面采用原位生长的方法,均匀负载了多孔碳材料,从而制备了多孔碳球/SiC纳米纤维载体材料.然后以十八醇为相变芯材,通过物理吸附法制备了多孔碳球/SiC纳米纤维/十八醇复合相变材料,研究了不同相变芯材负载量的复合相变材料的储热性能与稳定性能.DSC检测表明,负载40wt;十八醇的复合相变材料的熔点和凝固点分别为58.16℃和52.25℃,熔化潜热为101.42 J/g;负载50wt;十八醇的复合相变材料的熔点和凝固点分别为58.01℃和51.93℃,熔化潜热为115.47 J/g.与十八醇相比,负载40wt;十八醇的复合相变材料的导热率提高了71;;负载50 wt;十八醇的复合相变材料的导热率提高了62;.该复合相变材料在循环使用300次后,其导热率基本保持相同,具有稳定性高;相变芯材封装安全性好,相变潜热大,具有非常优异的应用性能. 相似文献
10.
以铝粉、盐酸和硅溶胶、聚乙烯醇为原料,去离子水为溶剂,采用溶胶-凝胶法制备了水溶性的莫来石纤维纺丝原液及其前驱体纤维.探讨了纺丝助剂加入量对纺丝原液可纺性的影响,采用红外吸收光谱FTIR和旋转流变仪分别研究了纺丝原液的红外吸收特性和流变学行为,借助XRD表征了前驱体纤维热处理后的物相组成.结果表明,纺丝助剂PVA的加入量为2; ~ 4;时,纺丝原液为剪切变稀的非牛顿型流体,呈现无管虹吸现象;固含量在30;~ 40;,粘度在4~7 Pa·s时,溶胶可纺性指标25 ~ 26 cm/s,纺丝性能最佳;纺丝原液中存在着利于成纤的Al-O-Si的链状结构的线性高分子聚合物.经过1050℃热处理后纤维的主晶相为莫来石. 相似文献
11.
以五氯化锯为原料,液体石蜡为分相剂,采用微乳液静电纺丝技术制备前驱体纤维,再经氨气还原氮化得到多孔氮化锯纤维.利用XRD、SEM、BET等进行物相及微观结构表征,结果表明合成的纤维为四方Nb4N5晶相,纤维连续,直径为260 nm,由于液体石蜡分相以及助纺剂PVP的分解作用,在纤维上形成较多孔道结构,其BET比表面积为125m2/g,孔径为2~5nm范围内的孔结构比例较高,同时在5~10 nm 范围也存在较多的孔道结构,平均孔径为7.3 nm.采用CV、GCD及EIS等测试其电化学性能发现,氮化锯纤维的储能主要受电极表面电荷传递过程控制的,外表面比电容贡献高,这得益于分布在纤维中的孔结构,其可为离子传输提供通道,并为电化学反应提供空间.当电流密度为5mA/g时,比电容为151 F/g,能量密度为7.73 Wh/kg时,功率密度为3.03 W/kg,其经2000次循环后其比电容保持在95;以上. 相似文献
12.
为了提高环氧树脂的摩擦磨损性能,利用碳化硅颗粒填充改性制备了碳化硅/环氧树脂复合材料,探讨了碳化硅含量对于复合材料摩擦磨损性能的影响及磨损表面的磨损机理,分析复合材料的弯曲性能和动态力学性能,揭示了碳化硅的增强机理.结果表明高含量的微米碳化硅能够明显降低环氧树脂的摩擦系数,提高其耐磨性能:与纯环氧树脂相比,添加60wt;碳化硅的复合材料摩擦系数降低了21.44;,而添加40wt;碳化硅的复合材料,体积磨损率降低了83.49;.同时高碳化硅含量下复合材料的弯曲性能和动态力学性能有所增加. 相似文献
13.
14.
15.
以乙炔为碳源,镍粉为催化剂,噻吩作为助催化剂,采用化学气相沉积法制备微螺旋炭纤维.通过扫描电子显微镜、X射线衍射、激光拉曼光谱、元素分析和热失重分析等分析手段,研究了微螺旋炭纤维的制备工艺,考察了微螺旋炭纤维的形貌、微观结构和性能.结果表明:微螺旋炭纤维具有双螺旋结构,单根纤维存在左旋和右旋两种螺旋方向以及圆形和扁形两种纤维截面,同时也可以观察到一些特殊形状的微螺旋炭纤维.微螺旋炭纤维主要由C、Ni、S、H元素组成,且其纤维表面全部由碳元素组成.微观结构整体有序度较差,存在一定量的无定形碳和晶体缺陷.微螺旋炭纤维具有较高的抗氧化性. 相似文献
16.
以新颖的聚苯并噁嗪为前躯体制备得到含氮多孔碳.采用SEM、XRD、Raman、XPS、BET等测试方法对样品的形貌和结构进行表征并研究其电化学性能.结果表明,800℃下反应得到的含氮多孔碳(PC2-800)石墨化程度最高,其氮官能团主要为吡啶氮和吡咯氮,氧官能团主要为酚羟基和羧基.PC2-800属于微孔材料,比表面积达938.3344 m2·g-1.所有样品均表现出良好的电容特性,活化温度为800℃时比电容最大,1A·g-1下为236.3 F·g-1,这与其大的比表面积,高的石墨化程度,高含量的氮氧官能团密切相关. 相似文献
17.
石墨烯作为一种理想的新型二维纳米材料,有着独特的理化性能和广泛应用价值,但成本高、产率低、分散性较差是制约其推广应用的关键.为了解决这一问题,现以北方杨树叶为原料,以KMnO4和H2SO4为氧化剂,水热氧化裂化直接得到MnO2仿生石墨烯复合材料(MnO2@BGO).通过XPS、SEM、TEM、XRD等测试手段对材料组成及微观结构进行表征.从SEM、TEM及氮气吸附脱附分析可以看出,通过氧化碳化直接得到的MnO2@BGO复合材料,MnO2分布均匀,比表面积达605 m2/g.此复合材料与未经氧化剂浸渍得到碳材料(BGO)相比,更多的保留了叶片原有的叶脉结构和孔隙,孔径分布较窄,平均孔径为3.7nm.从AMF分析可以看出,MnO2@BGO复合材料类似二维纳米膜,得到的片层厚度最薄<1.23 nm,最厚≯5.65 nm,平均厚度2.57 nm.XPS分析表明,C存在形式以C=C为主,表明材料石墨化程度较高,属于仿生石墨烯.电化学性能分析表明,在电流密度在1 A/g时,该材料所做电极比电容为387 F/g. 相似文献
18.
本文利用简单、高效的浆料直接发泡法制备气孔率高达96%的Al2O3/Si泡沫陶瓷,并选用简便、易行的焦炭埋烧工艺在Al2O3/Si泡沫陶瓷坯体中生长出大量SiC纳米线。通过控制烧结温度来观察分析SiC纳米线的生长形貌变化。采用扫描电子显微镜(SEM)、X射线衍射仪、BET比表面积测试仪、电子万能试验机等对泡沫陶瓷的微观结构、物相组成、比表面积、气孔率、抗压强度、热导率进行分析与表征。结果表明,1 450 ℃烧结时得到的SiC纳米线最多,纳米线在泡沫陶瓷孔壁交织缠绕。同时观察到SiC纳米线的存在改变了氧化铝泡沫陶瓷固有的脆性断裂模式,SiC纳米线可有效促进泡沫陶瓷在压缩过程中的裂纹偏转。本实验制备了一种新型的纳米线缠绕在孔壁上的三维网络结构的泡沫陶瓷,为在泡沫陶瓷内部原位生长SiC纳米线提供了新的方法,更好地拓展了泡沫陶瓷在环境过滤、催化剂载体等领域中的应用。 相似文献