首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
利用脉冲磁控溅射制备技术,采用单质金属铜靶作为溅射靶,在氧气(O2)和氩气(Ar)的混合气氛下,在石英玻璃衬底上制备了Cu2O薄膜.研究了溅射功率对脉冲反应磁控溅射沉积法在室温下对生长Cu2O薄膜结构、表面形貌及光学性能的影响.结果表明,在O2、Ar流量比(O2/Ar)为30∶80的气氛条件下,在60~90 W的溅射功率范围内可获得< 111>取向的Cu2O薄膜;薄膜的表面粗糙度的均方根值随溅射功率的增加而增大;薄膜的光谱吸收范围为300 ~670 nm,不同溅射功率下制备的薄膜均在430 nm附近出现明显的带边吸收,其光学带隙(Eg)在2.15~2.53 eV之间变化.  相似文献   

2.
在玻璃衬底上采用射频磁控溅射方法制备了硫化镉(CdS)薄膜,研究了溅射功率对CdS薄膜的结构、表面形貌、光学特性和电学性质的影响.XRD测量表明制备的CdS薄膜均为六方纤锌矿结构的多晶薄膜.随着功率从40 W增加到80 W,H(102)面的峰呈现增强再逐渐减弱的趋势.60 W时薄膜的衍射峰最强,结晶度最好.同时,薄膜的晶粒尺寸随着功率增加先增大再减小.从SEM图像可以看出,制备的薄膜均匀致密且无针孔的出现.在可见光范围内,薄膜的平均透射率都在70;以上.随着功率的增加,薄膜带隙在2.25~2.41 eV的范围内变化,而暗电导率呈现先增加再减少的趋势.  相似文献   

3.
廖杨芳  谢泉 《人工晶体学报》2021,50(9):1675-1680
采用射频磁控溅射在蓝宝石衬底上制备了Mg2Si纳米晶薄膜,研究了Mg2Si烧结靶溅射功率(90~140 W)及溅射时间(10~60 min)对Mg2Si薄膜的结构和电阻率的影响。结果表明:随着溅射功率增加,样品的XRD衍射峰逐渐增强;但当功率超过100 W时,样品中出现了偏析出来的单质Mg。随着溅射时间增加,样品的XRD强度先增强后减弱,溅射时间为40 min时,样品的XRD衍射峰最强;继续增加溅射时间,样品中出现微弱的MgO衍射峰。所有样品均呈现出Mg2Si晶体的特征拉曼峰,即256 cm-1附近的F2g模及347 cm-1附近的F1u(LO)模。随着溅射功率增加,样品的电阻率减小;随着溅射时间增加,样品的电阻率先减小后增大,溅射时间为40 min时,样品的电阻率最小。  相似文献   

4.
在不同溅射压强下,通过射频(RF)磁控溅射在石英玻璃衬底上沉积得到W掺杂ZnO薄膜(WZO).对样品的结晶性能,表面形貌和光学性能进行测试分析,结果表明:在适当溅射压强下,薄膜具有良好的结晶性和光学性能.随着溅射压强的增加,薄膜的结晶性先变好后变差,晶粒尺寸先增大后减小,在1.0 Pa时薄膜的结晶性最好,且晶粒尺寸最大,约为32 nm;所有WZO薄膜样品的平均透光率超过80;;光致发光主要由本征发光和缺陷引起的蓝光发光组成,在1.0Pa时薄膜还有明显的Zn;缺陷,在1.2Pa时薄膜有明显的Oi缺陷.  相似文献   

5.
采用磁控溅射法制备CdZnTe先驱薄膜/金属Al膜的层叠结构,利用铝诱导技术制备CdZnTe薄膜.通过原子力显微镜、X射线衍射、Raman光谱仪和半导体特性分析系统,研究了铝膜溅射功率对铝诱导CdZnTe薄膜结构及性能的影响.结果表明:随着铝膜溅射功率的增加,铝诱导CdZnTe薄膜表面的薄膜结晶质量、晶粒尺寸和薄膜电阻率先增大后减小.铝诱导晶化的效果与铝膜溅射功率有关,当铝膜溅射功率达到100 W,CdZnTe薄膜的晶化诱导效果最显著,薄膜结晶质量最好,晶粒尺寸最大.  相似文献   

6.
溅射功率对直流磁控溅射法沉积TGZO薄膜性能的影响   总被引:2,自引:0,他引:2  
利用直流磁控溅射法在室温水冷玻璃衬底上制备出了高质量的钛镓共掺杂氧化锌(TGZO)透明导电薄膜.研究了溅射功率对TGZO薄膜结构、形貌和光电性能的影响.研究结果表明:溅射功率对TGZO薄膜的结构和电阻率有重要影响.X射线衍射分析表明,TGZO 薄膜为六角纤锌矿结构的多晶薄膜,且具有c轴择优取向.在溅射功率为120 W时,实验获得的TGZO薄膜的方块电阻为2.71 Ω/□,此时电阻率具有最小值2.18×10-4 Ω·cm.实验制备的TGZO 薄膜在可见光区范围内平均透过率达到了90;以上.  相似文献   

7.
本文采用直流磁控溅射分层溅射制备了氧化铟锡(ITO)/银(Ag)/ITO多层复合薄膜。系统研究了溅射温度对ITO/Ag/ITO多层复合薄膜的结构和光电性能影响。采用ITO(m(In2O3)∶m(SnO2)=9∶1;直径60 mm)靶材和Ag(纯度99.999%;直径60 mm)靶材分层溅射,使ITO薄膜和Ag薄膜依次沉积在钠-钙玻璃基片上。结果表明,溅射温度对该薄膜的形貌和结构具有显著的影响。在中间Ag薄膜和顶层ITO薄膜的溅射温度均为120 ℃时,薄膜表面晶粒形貌由类球形转变为菱形,此时薄膜方阻为3.68 Ω/Sq,在488 nm处透射率为88.98%,且品质因数为0.03 Ω-1,实现了低方阻高可见光透射率ITO/Ag/ITO多层复合薄膜的制备。  相似文献   

8.
利用对靶磁控溅射方法在尺寸为6 cm×6 cm有机玻璃衬底上室温沉积ITO透明导电氧化物薄膜,重点研究了沉积时间对于ITO薄膜导电性、可见光透光性以及红外发射特性的影响.结果发现随溅射时间延长,薄膜厚度呈线性增加;XRD分析显示薄膜逐渐由非晶结构转变为(400)与(440)取向的多晶结构;薄膜导电性能提高,电阻率整体迅速下降,在溅射时间为60 min时达到最小为2.1×10-4Ω·cm,载流子浓度达到最高值为1.2×1021 cm-3,同时薄膜红外发射率最低可达0.17;薄膜可见光透光率逐渐下降,并且在紫外光区域出现一定红移.  相似文献   

9.
采用射频磁控溅射法,采用不同的溅射压强将同一掺钛氧化锌靶材在普通玻璃衬底上溅射出八个TZO(掺钛氧化锌)薄膜样品,测试其微结构和光电性能,分析其薄膜性能与溅射压强之间的微观机理,从而获得制备性能优越的TZO薄膜所需的最佳溅射压强.结果表明:所有样品均为具有c轴择优取向的六角铅锌矿多晶纳米薄膜;溅射压强对薄膜微结构和光电性能有显著的影响;溅射功率为150 W,氩气流量为25 sccm,衬底温度为150℃,压强为0.5 Pa时制备的薄膜光电性能较好,具有较大晶粒尺寸,在可见光区(400 ~ 760 nm)有较高的平均透过率达91.48;,较低电阻率4.13×10-4 Ω·cm,较高的载流子浓度和较大迁移率.  相似文献   

10.
采用射频磁控溅射法在室温玻璃衬底上成功地制备出了铟镓锌氧(In-Ga-Zn-O)透明导电薄膜.研究了不同溅射功率对In-Ga-Zn-O薄膜结构、电学和光学性能的影响.X射线衍射(XRD)表明,在80~150 W溅射功率范围内In-Ga-Zn-O薄膜为非晶结构.随着溅射功率的增加,生长速率成线性增加,电阻率逐渐降低.透射光谱显示在350 nm附近出现较陡的吸收边缘,说明In-Ga-Zn-O薄膜在以上溅射功率范围内具有良好的薄膜质量.光学禁带宽度随着溅射功率增加而减小.In-Ga-Zn-O薄膜在500~800nm可见光区平均透过率超过90;.  相似文献   

11.
运用射频磁控溅射技术,改变氩氧流量比在玻璃衬底上生长ZnO∶ Al(ZAO)样品,采用XRD、紫外-可见分光光度计对薄膜微结构、厚度及其光学性能表征,结果发现:维持氩流量不变(9 sccm),随着氧流量增加(1~9 sccm),样品XRD峰强减小,半高宽增大,晶粒尺寸减小,薄膜结晶性能变差;而维持氧流量不变(9 sccm),氩流量减小(9~3 sccm),样品XRD峰强增大,半高宽减小,晶粒尺寸变大,结晶性能变好.紫外可见光光谱在400 ~ 900nm波长区间平均透射率差异大(67.9; ~91.1;);在420 ~ 900 nm波长区间平均透光率高且差异小(90.2; ~92.4;).  相似文献   

12.
在室温下,利用直流反应磁控溅射技术在不同的氧气流量下沉积ZnO∶ Al (AZO)薄膜.采用XRD、SEM和TEM技术分析薄膜相成分、表面截面形貌及微观结构.结果表明:氧气流量为2.5 sccm时,沉积形成的薄膜为不透明具有金属导电性能的AZO/Zn( AZO)双层复合膜结构;氧气流量为3.5 sccm时,沉积形成了透明导电的AZO薄膜;氧气流量为5.0 sccm时,形成了透明不导电且含有纳米Al2O3颗粒的AZO薄膜;此外,AZO薄膜在400℃退火后,薄膜晶粒长大和(002)晶面方向择优生长更加明显以及高氧气流量沉积的AZO薄膜中的纳米Al2O3颗粒消失.  相似文献   

13.
朱汉明  乐松 《人工晶体学报》2014,43(11):2892-2896
采用磁控溅射后退火的方式成功制备了硒化银薄膜,膜厚约为310 nm.X射线粉末衍射分析表明所制备薄膜为单相正交结构,伴随择优取向;比较不同退火温度的效果后发现300℃退火后的薄膜样品结晶最好.扫描电子显微镜、X射线能谱分析表明300℃退火后样品均匀致密,元素组分接近原始比例,是较为适宜的退火温度.低温磁电阻测试显示薄膜样品具有明显的正磁电阻效应,90K附近达到最大磁电阻值7.3;.霍尔系数测量得到薄膜样品室温载流子浓度与霍尔迁移率分别为2.2×1019 cm-3与221 cm2·V-1·s-1.  相似文献   

14.
采用脉冲磁控溅射系统在玻璃衬底上制备了ZnO∶B薄膜,利用霍尔测试仪和紫外-可见光-近红外分光光度计及逐点无约束最优化法,研究了溅射气压(0.1 ~3 Pa)对ZnO薄膜的光学和电学特性的影响.结果表明:ZnO∶B薄膜在可见光区域内的平均透光率高于80;,近红外波段的透过率及薄膜的电阻率与溅射气压成正比;折射率n随溅射气压降低呈下降趋势,其值介于1.92 ~2.09之间;在较低的溅射气压下(PAr=0.1 Pa)获得的薄膜电阻率最小(3.7×10-3Ω·cm),且对应着小的光学带隙(Eg=3.463 eV).  相似文献   

15.
采用中频双极脉冲(IFBP)和射频(RF)磁控溅射分别在(100)取向的单晶Si衬底上沉积C掺杂h-BN(h-BN:C)薄膜,随后在95;Ar+5;H2混合气氛中进行700℃退火处理,对其结构、化学组成、元素的化学价态、表面形貌以及导电性进行了分析研究.结果表明:两种溅射方法均成功在Si基片上制备出致密连续的h-BN:C薄膜,其电阻率可低至2.9×104~2.5×105Ω·cm.对比发现两种制备方法中IFBP磁控溅射具有较快沉积速率,制备出的h-BN:C薄膜结构更稳定,结晶性更好;而RF磁控溅射制备的h-BN:C薄膜经700℃退火处理后形成了层状结构.在溅射气氛中掺入一定量H2对提高h-BN:C薄膜稳定性极为重要,而沉积后的低温退火处理更可提高其结晶性和稳定性.  相似文献   

16.
氧气流量对射频磁控溅射制备Cu2O薄膜性能的影响   总被引:1,自引:1,他引:0  
通过磁控溅射方法在玻璃衬底上制备Cu2O薄膜,采用X射线衍射(XRD)、分光光度计、原子力显微镜(AFM)和X射线光电子能谱(XPS)等研究了氧气流量对Cu2O薄膜性能的影响.结果表明:氧气流量为4.2 sccm时,薄膜为单相的Cu2O,具有较高的结晶质量和可见光透过率,光学带隙为2.29 eV,薄膜的导电类型是p型且空穴浓度为2×1016 cm-3.通过XPS能谱分析Cu 2p3/2和O 1s结合能,确定了薄膜中Cu以+1价存在.  相似文献   

17.
采用等离子体增强化学气相沉积技术,以NH3、SiH4和N2为反应气体制备富硅-氮化硅薄膜.在优化了其它沉积参数条件下,研究氨气流量对富硅-氮化硅薄膜的结构和光学性质的影响.利用傅立叶变换红外光谱、紫外可见光谱和X射线衍射谱分析了薄膜的键合情况、带隙结构.结果表明,随着NH3流量的增大,薄膜中的Si-N键和N-H键增强,Si-H键减小并向高波数方向移动,薄膜逐渐由非晶SiNx相向小晶粒Si3 N4相转变.同时随着NH3流量的增大,薄膜的光学带隙逐渐展宽,微观结构的有序度降低.XRD图谱分析表明薄膜内的平均晶粒尺寸也随着氨气流量的增加而在逐渐增大.结合以上结果分析,适当增加NH3流量有助于薄膜由非晶SiNx向包含小晶粒的Si3 N4转变.  相似文献   

18.
采用射频磁控溅射技术在硅衬底上制备了锰钴镍氧(Mn-Co-Ni-O, MCNO)薄膜并进行了后退火处理。利用X射线衍射、扫描电子显微镜、光学测试仪器等测试手段对晶体结构、表面形貌及光学性能进行表征。分析了不同射频溅射功率(60~100 W)对MCNO薄膜表面微观形貌、晶体结构和光学性能的影响。结果表明,在60~90 W下获得的薄膜表面致密且均匀,但在100 W下获得的MCNO薄膜表面晶粒尺寸显著增大。物相分析表明,采用射频磁控溅射沉积的MCNO薄膜主要为尖晶石结构,溅射功率对薄膜结晶质量和择优取向具有显著影响,在80 W下获得的MCNO薄膜结晶质量最佳。同时,拉曼光谱测试也表明该MCNO薄膜表现出最强的Mn4+—O对称弯曲振动和最小的压应力。紫外-可见-近红外光谱分析表明,MCNO薄膜的吸光范围主要在可见光-近红外波段,在80~90 W溅射功率下获得的MCNO薄膜在近红外波段表现出更强的吸收峰。射频溅射功率的改变会影响薄膜的厚度和结晶质量,从而对薄膜的光学带隙起到调控作用。光致发光光谱测试不同溅射功率下薄膜的缺陷峰发光强度,且在功率为80 W时沉积的薄膜具有最强紫外发射峰,表明改变溅射功率能够有效改善薄膜缺陷及提高晶体质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号