首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ionic chemical background noise in LC-MS has been one of the major problems encountered in trace analysis. In this study, the typical negative background ions in ESI LC-MS are investigated exemplarily. It was carried out using tandem mass spectrometry to study the products and precursors of the major background ions to examine their structures and structure relationship. Various typical LC eluents with different compositions and additives such as ammonium formate/formic acid and ammonium acetate/acetic acid have been studied. Several types of negative noise ions are concluded, which include the cluster chemical background ions only from mobile phase components and additives. Furthermore, there are also abundant clusters resulting from the solvation of some typical individual contaminants (e.g. additives and degradation products from tubing, impurities in the mobile phase, etc.), accompanied by some minor contribution from contaminants. The elemental composition of some selected ions was confirmed using the FT-ICR accurate mass measurement. This work provides us insight into information about the structures and types of common negative background ions and will help to understand their formation and origins. More importantly, it will guide us to prevent chemical noise interference in practice and also contribute to develop methods for noise reduction based on selective ion-molecule reactions.  相似文献   

2.
In the pharmaceutical industry, a higher attrition rate during the drug discovery process means a lower drug failure rate in the later stages. This translates into shorter drug development time and reduced cost for bringing a drug to market. Over the past few years, analytical strategies based on liquid chromatography/mass spectrometry (LC/MS) have gone through revolutionary changes and presently accommodate most of the needs of the pharmaceutical industry. Among these LC/MS techniques, collision induced dissociation (CID) or tandem mass spectrometry (MS/MS and MS(n)) techniques have been widely used to identify unknown compounds and characterize metabolites. MS/MS methods are generally ineffective for distinguishing isomeric compounds such as metabolites involving oxygenation of carbon or nitrogen atoms. Most recently, atmospheric pressure ionization (API) source decomposition methods have been shown to aid in the mass spectral distinction of isomeric oxygenated (N-oxide vs hydroxyl) products/metabolites. In previous studies, experiments were conducted using mass spectrometers equipped with a heated capillary interface between the mass analyzer and the ionization source. In the present study, we investigated the impact of the length of a heated capillary or heated ion transfer tube (a newer version of the heated capillary designed for accommodating orthogonal API source design) in inducing for-API source deoxygenation that allows the distinction of N-oxide from hydroxyl compounds. 8-Hydroxyquinoline (HO-Q), quinoline-N-oxide (Q-NO) and 8-hydroxyquinoline-N-oxide (HO-Q-NO) were used as model compounds on three different mass spectrometers (LCQ Deca, LCQ Advantage and TSQ Quantum). Irrespective of heated capillary or ion transfer tube length, N-oxides from this class of compounds underwent predominantly deoxygenation decomposition under atmospheric pressure chemical ionization conditions and the abundance of the diagnostic [M + H - O](+) ions increased with increasing vaporizer temperature. Furthermore, the results suggest that in API source decompostion methods described in this paper can be conducted using mass spectrometers with non-heated capillary or ion transfer tube API interfaces. Because N-oxides can undergo in-source decomposition and interfere with quantitation experiments, particular attention should be paid when developing API based bioanalytical methods.  相似文献   

3.
Three cholestane glycosides including OSW-1 with antitumor activity and two new analogues with modified steroidal side chains, thienyl OSW-1 and silylated thienyl OSW-1, were synthesized. Analyses were performed using optimized, reversed-phase liquid chromatography (LC) with electrospray ionization and atmospheric pressure chemical ionization quadrupole mass spectrometry (MS). The ionization mode and polarity, cone voltage, and chromatographic conditions were evaluated. The optimum LC/MS conditions to obtain valuable ions, indispensable for identifying the structures, are described. The key fragmentation pathways, which will be useful for confirming the detailed structures of steroidal glycosides, are also proposed.  相似文献   

4.
The study of the metabolic fate of drugs is an essential and important part of the drug development process. The analysis of metabolites is a challenging task and several different analytical methods have been used in these studies. However, after the introduction of the atmospheric pressure ionization (API) technique, electrospray and atmospheric pressure chemical ionization, liquid chromatography/mass spectrometry (LC/MS) has become an important and widely used method in the analysis of metabolites owing to its superior specificity, sensitivity and efficiency. In this paper the feasibility of LC/API-MS techniques in the identification, structure characterization and quantitation of drug metabolites is reviewed. Sample preparation, LC techniques, isotope labeling, suitability of different MS techniques, such as tandem mass spectrometry, and high-resolution MS in drug metabolite analysis, are summarized and discussed. Automation of data acquisition and interpretation, special techniques and possible future trends are also the topics of the review.  相似文献   

5.
A sonic spray ionization liquid chromatography/mass spectrometry (LC/SSI-MS) procedure combined with off-line solid-phase extraction was optimized for the analysis of 20 endocrine-disrupting chemicals (EDCs) in water samples. Method development included a comparison of the novel sonic spray ionization (SSI) with more traditional ion sources, i.e. pneumatically assisted electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). It was demonstrated that SSI and ESI spectra were very similar, but were more prone to the formation of solvent cluster ions as compared with APCI spectra. This phenomenon was most prominent for SSI and resulted in an increased chemical background in full-scan mass spectra. However, this chemical noise did not affect the overall sensitivity of SSI and ESI. After optimization of LC and MS parameters, the LC/SSI-MS method was validated. Recoveries ranged from 76.3 up to 113.4% for all compounds. Limits of detection (LOD) and quantitation (LOQ) were established between 3.0 and 11.5 ng/L and 9.9 and 38.0 ng/L, respectively. Within-day (n = 5) and between-day (n = 5) reproducibility were investigated at three levels and ranged from 3.3-16.5% and 7.6-19.2%, respectively. Eight-point calibration curves were established and showed linearity for all compounds (r(2) > 0.987) over a linear dynamic range of 10-10 000 ng/L.  相似文献   

6.
The metabolism of lafutidine in human liver microsomes was studied using liquid chromatography/ion trap mass spectrometry with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources. A total of 14 metabolites were identified including hydroxylated lafutidine and sulfonyl lafutidine as the major metabolites. The chemical properties and the MS(n) behaviors of lafutidine and all of its identified metabolites were studied in detail. Lafutidine had a fragmentation pattern as a result of homolytic bond cleavage in the MS/MS spectrum. This cleavage can form an odd-electron ion with the loss of furan-2-ylmethyl radical (-81 Da with a proton shift), which then sequentially loses neutral groups in the MS(3) spectrum. This fragmentation sequence was also observed from the metabolites with the unchanged sulfinyl moiety. When the sulfinyl moiety was oxidized to the sulfonyl moiety, this fragmentation sequence did not exist, which could be used to identify S-oxidation metabolites of lafutidine. In general, N-oxides could produce distinct [M+H-O](+) ions under LC/APCI-MS due to the thermal activation in the desolvation region of the API source, which could be used to identify N-oxidation metabolites of lafutidine. In order to avoid the possibility of false positives, the MS/MS spectrum of the [M+H-O](+) ion was compared with that of the non-N-oxidation metabolites or parent drug in the APCI source. If they were consistent, the structure could be finally confirmed. The exact masses for lafutidine and lafutidine N-oxide fragment ions were determined using an LTQ/Orbitrap mass spectrometer.  相似文献   

7.
The evolution of atmospheric pressure ionization techniques which are now routinely applied as liquid chromatograph/mass spectrometer (LC/MS) interfaces is described. Electrospray and related methods, as well as atmospheric pressure chemical ionization combined with the heated nebulizer interface, both began as specialized ionization techniques which became much more widely accepted when combined with tandem mass spectrometry. Today, both are widely used for quantitative and qualitative LC/MS and LC/MS/MS analyses. Important events in the development of these methods are described, along with key elements in the evolution of the ion source-to-vacuum interface techniques that contributed to their success.  相似文献   

8.
Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.  相似文献   

9.
LC-MS has become an invaluable technique for trace analysis of polar compounds in aqueous samples of the environment and in water treatment. LC-MS is of particular importance due to the impetus it has provided for research into the occurrence and fate of polar contaminants, and of their even more polar transformation products. Mass spectrometric detection and identification is most widely used in combination with sample preconcentration, chromatographic separation and atmospheric pressure ionization (API). The focus of the first part of this review is directed particularly toward instruments and method development with respect to their applications for detecting emerging contaminants, microorganisms and humic substances (HS). The current status and future perspectives of 1) mass analyzers, 2) ionization techniques to interface liquid chromatography (LC) with mass spectrometry (MS), 3) methods for preconcentration and separation with respect to their application for water analysis are discussed and examples of applications are given. Quadrupole and ion trap mass analyzers with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are already applied in routine analysis. Time-of-flight (TOF) mass spectrometers are of particular interest for accurate mass measurements for identification of unknowns. For non-polar compounds, different ionization approaches have been described, such as atmospheric pressure photoionization (APPI), electrochemistry with ESI, or electron capture ionization with APCI. In sample preconcentration and separation, solid phase extraction (SPE) with different non-selective sorbent materials and HPLC on reversed-phase materials (RP-HPLC) play the dominant role. In addition, various on-line and miniaturized approaches for sample extraction and sample introduction into the MS have been used. Ion chromatography (IC), size-exclusion chromatography (SEC), and capillary electrophoresis (CE) are alternative separation techniques. Furthermore, the issues of compound identification, matrix effects on quantitation, development of mass spectral libraries and the topic of connecting analysis and toxicity bioassays are addressed.  相似文献   

10.
The analytical hyphenation of micro-flow high-performance liquid chromatography (LC), with post-column liquid mixing and mass spectrometric detection (MS) was established to detect partially oxidized polycyclic aromatic hydrocarbons (oxy-PAHs) for low quantity samples. 100pmol injections of 30 reference standards could be detected in good sensitivity using either atmospheric pressure chemical ionization (APCI) and/or atmospheric pressure photoionization (APPI). The connected mass spectrometer was a single quadrupol analyzer realizing simultaneous registration of positive and negative ions in scan range width of 200 - 300Da. The ionization efficiency was compared using three ionization sources (incl. electrospray ionization (ESI)) for several oxy-PAHs. According to the mass spectra, the analytes behave differently in ionization properties. Ionization mechanism (e.g. deprotonated ions and electron captured ions) could be discussed with new inside views. Finally, the hyphenated system was applied to an exemplary aerosol extract and thus highlighting the expedient utilization of this downscaled method for real samples.  相似文献   

11.
The continuous development in analytical instrumentation has brought the newly developed Orbitrap‐based gas chromatography / mass spectrometry (GC/MS) instrument into the forefront for the analysis of complex mixtures such as crude oil. Traditional instrumentation usually requires a choice to be made between mass resolving power or an efficient chromatographic separation, which ideally enables the distinction of structural isomers that is not possible by mass spectrometry alone. Now, these features can be combined, thus enabling a deeper understanding of the constituents of volatile samples on a molecular level. Although electron ionization is the most popular ionization method employed in GC/MS analysis, the need for softer ionization methods has led to the utilization of atmospheric pressure ionization sources. The last arrival to this family is the atmospheric pressure photoionization (APPI), which was originally developed for liquid chromatography / mass spectrometry (LC/MS). With a newly developed commercial GC‐APPI interface, it is possible to extend the characterization of unknown compounds. Here, first results about the capabilities of the GC/MS instrument under high or low energy EI or APPI are reported on a volatile gas condensate. The use of different ionization energies helps matching the low abundant molecular ions to the structurally important fragment ions. A broad range of compounds from polar to medium polar were successfully detected and complementary information regarding the analyte was obtained.  相似文献   

12.
1 Introduction Gaschromatography/massspectrometry (GC/MS)andliquidchromatography/massspectrometry (LC/MS) ,representativesofthehyphenatedtechniques ,aresomeofthemostreliableanalyticalmethods ,whicharethesynergisticcombinationoftwopowerfulanalyticaltechniques;…  相似文献   

13.
The regioisomers (sn-ABA/sn-AAB) of four triacylglycerols (TAGs), 18:2/18:2/18:1 (LLO), 18:2/18:1/18:1 (LOO), 16:0/18:1/18:1 (POO), and 16:0/16:0/18:1 (PPO), were quantified in lard, rapeseed oil, and sunflower seed oil by three different mass spectrometric methods using liquid chromatography (LC) and two different mass spectrometers. The ionization methods used were positive ion atmospheric pressure chemical ionization (APCI), positive ion electrospray ionization (ESI), and negative ion chemical ionization (NICI) with ammonia as the reagent gas. The LC/APCI-MS results with two different instrumentation types, LC/ESI-MS/MS and direct inlet ammonia NICI-MS/MS, were compared. The LC/APCI-MS method is based on the preferential formation of diacylglycerol (DAG) fragment ions during ionization by loss of sn-1/3 fatty acids from [M+H]+ ions. Similar formation of the DAG ions from [M+NH4]+ ions by collision-induced dissociation (CID) in the LC/ESI-MS/MS method and the [M-H--RCOOH-100]- ions from [M-H]- ions by CID in the direct inlet ammonia NICI-MS/MS method is observed. These methods were found to be useful and reliable in determining the regioisomeric structure of TAGs. No statistically significant differences were found between the results obtained with these methods. For LLO, LOO, and POO the proportions of sn-ABA isomer calculated from the results from all four methods were in rapeseed oil 7.7 +/- 6.5, 57.9 +/- 3.3, and 4.5 +/- 6.1%, respectively, and in sunflower seed oil 12.2 +/- 6.9, 34.0 +/- 5.2, and 1.4 +/- 2.8%, respectively. The proportions of ABA of POO and PPO in lard were 95.3 +/- 3.2 and 4.9 +/- 5.6%, respectively. This study also proved that the LC/APCI-MS/MS method examined is not applicable in the quantification of TAG regioisomers because the formation of DAG ions is not clearly dependent on the positional distribution of the fatty acids.  相似文献   

14.
Using gas chromatography/electron impact-mass spectrometry (GC/EI-MS) and high performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS), the structures of cyclofenil metabolites in human urine have been assigned. The hydroxyl metabolites liberated from the glucuronide conjugates after acid hydrolysis were characterized as the trimethylsilyl (O-TMS) derivatives using GC/MS. The conjugate glucuronide forms were detected without hydrolysis by HPLC/MS. Cyclofenil was not observed in urine. Tentative structures for the two metabolites are proposed.  相似文献   

15.
The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant.  相似文献   

16.
Direct probe in vacuo chemical ionization (isobutane CI-MS) and Pyroprobe atmospheric pressure chemical ionization (APCI-MS) are complementary techniques for the analysis of polymeric materials. Both techniques can generally be used to detect residual chemicals and more volatile additives (via thermal desorption), as well as polymeric components (via pyrolysis).Isobutane CI-MS is often a “softer” technique than APCI-MS, giving less background, less fragmentation, and more predictable and reproducible spectra. APCI, on the other hand, provides a higher maximum temperature and a means to carry out sample heating at atmospheric pressure (to simulate TGA). Pyroprobe APCI with high performance instruments has the added features of high resolution mass measurement (to determine atomic compositions) and tandem mass spectrometry (MS/MS, to obtain fragmentation patterns).  相似文献   

17.
以骆驼蓬种籽中抗肿瘤活性化合物哈尔明及哈马灵的结构类似物哈尔满作为模 板,用非共价键法制备了对哈尔明及哈马灵具有强亲和性的分子烙印聚合物。此分 子烙印聚合物作为液相色谱固定相与大气压电离飞行时间质谱联用,直接分离鉴定 了草药骆驼蓬种籽甲醇粗提物中所含的哈尔明及哈灵两种抗肿瘤活性成分。实验结 果证明了通过分子烙印亲和色谱与质谱联用方法,快速有效地对中草药活性成分分 离鉴定是可能是。  相似文献   

18.
Pharmaceuticals require careful and precise determination of their impurities that might harm the user upon consumption. Although today, the most common technique for impurities identification is liquid chromatography‐mass spectrometry (LC‐MS/MS), it has several downsides due to the nature of the ionization method. Also, the analyses in many cases are targeted thus despite being present, some of the compounds will not be revealed. In this paper, we propose and show a new method for untargeted analysis and identification of impurities in active pharmaceutical ingredients (APIs). The instrument used for these analyses is a novel electron ionization (EI) LC‐MS with supersonic molecular beams (SMB). The EI‐LC‐MS‐SMB was implemented for analyses of several drug samples spiked with an impurity. The instrument provides EI mass spectra with enhanced molecular ions, named Cold EI, which increases the identification probabilities when the compound is identified with the aid of an EI library like National Institute of Standards and Technology (NIST). We analyzed ibuprofen and its impurities, and both the API and the expected impurity were identified with names and structures by the NIST library. Moreover, other unexpected impurities were found and identified proving the ability of the EI‐LC‐MS‐SMB system for truly untargeted analysis. The results show a broad dynamic range of four orders of magnitude at the same run with a signal‐to‐noise ratio of over 10 000 for the API and almost uniform response.  相似文献   

19.
The applicability of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the detection of the free anabolic steroid fraction in human urine was examined. Electrospray ionization (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization methods were optimized regarding eluent composition, ion source parameters and fragmentation. The methods were compared with respect to specificity and detection limit. Although all methods proved suitable, LC/ESI-MS/MS with a methanol-water gradient including 5 mM ammonium acetate and 0.01% acetic acid was found best for the purpose. Multiple reaction monitoring allowed the determination of steroids in urine at low nanogram per milliliter levels. LC/MS/MS exhibited high sensitivity and specificity for the detection of free steroids and may be a suitable technique for screening for the abuse of anabolic steroids in sports.  相似文献   

20.
We report a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for analyzing bisphenol A (BPA) and its halogenated derivatives. Since only tetrachlorobisphenol A and tetrabromobisphenol A (TBBPA) are commercially available, mono-, di- and trichlorobisphenol A were synthesized and purified in order to be used as analytical standards. This family of compounds was studied using electrospray ionization and an ion trap mass analyzer in order to characterize the new compounds and to propose fragmentation pathways. Multi-stage mass spectrometry was used to confirm the genealogical relationship between the ions. Some product ions were traced from MS/MS to MS(4) and the labelled compounds BPA-d(16) and TBBPA-(13)C(12) were used to assign some product ion structures. In general, the deprotonated molecule [M--H](-) loses a methyl and/or a halogen group during both MS/MS and MS(3), while the neutral loss of CO was also observed in MS(3) spectra. We selected the most intense and characteristic MS/MS transitions for LC/MS/MS analysis. LC separation was performed in a reversed-phase column; methanol/water (no additives) was used as the mobile phase in gradient elution mode; and BPA-d(16) was chosen as the internal standard. Solid-phase extraction (SPE) was used to pre-concentrate and to clean up water samples. The SPE LC/MS/MS method allows BPA and its halogenated derivatives to be detected at a few parts-per-billion (ppb) in surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号