首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fused polycyclic 4-aryl-3-methyl-4,7-dihydro-1H-pyrazolo[3,4-b]pyridines were obtained in a three-component regioselective reaction of 5-amino-3-methyl-1H-pyrazole, 2H-indene-1,3-dione and arylaldehydes in ethanol under ultrasound irradiation. This rapid method produced the products in short reaction times (4–5 min) and excellent yields (88–97%).  相似文献   

2.
The solvent-free indium-promoted reaction of alkanoyl chlorides with sterically and electronically diverse arylstannanes is a simple and direct method for the regioselective synthesis of primary, secondary and tertiary alkyl aryl ketones in good to excellent isolated yields (42–84%) under mild and neutral conditions. The protocol is also adequate for the synthesis of aryl vinyl ketones. Reaction times are drastically reduced (from 3–32 h to 10–70 min) under ultrasonic irradiation. Evidences for the involvement of a homolytic aromatic ipso-substitution mechanism, in which indium metal acts as radical initiator, are presented. It is possible the transference of two aryl groups from tin, thus improving effective mass yield, working with diarylstannanes as starting substrates.  相似文献   

3.
Synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-one derivatives catalyzed by dodecylbenzenesulfonic acid was carried out in 80–92% yields at 40–42 °C within 1–2 h in aqueous media via one-pot three-component condensation of isatoic anhydride, aromatic aldehyde and amine under ultrasound irradiation. Convenient work-up procedures, mild reaction conditions, avoiding the use of organic solvents, and friendly to environment are the salient features of this protocol.  相似文献   

4.
The catalytic esterification of sodium 4-hydroxybenzoate with benzyl bromide by ultrasound-assisted solid–liquid phase-transfer catalysis (U-SLPTC) was investigated using the novel dual-site phase-transfer catalyst 4,4′-bis(tributylammoniomethyl)-1,1′-biphenyl dichloride (BTBAMBC), which was synthesized from the reaction of 4,4′-bis(chloromethyl)-1,1′-biphenyl and tributylamine. Without catalyst and in the absence of water, the product yield at 60 °C was only 0.36% in 30 min of reaction even under ultrasound irradiation (28 kHz/300 W) and 250 rpm of stirring speed. When 1 cm3 of water and 0.5 mmol of BTBAMBC were added, the yield increased to 84.3%. The catalytic intermediate 4,4′-bis(tributylammoniomethyl)-1,1′-biphenyl di-4-hydroxybenzoate was also synthesized to verify the intrinsic reaction which was mainly conducted in the quasi-aqueous phase locating between solid and organic phases. Pseudo-first-order kinetic equation was used to correlate the overall reaction, and the apparent rate coefficient with ultrasound (28 kHz/300 W) was 0.1057 min−1, with 88% higher than that (0.0563 min−1) without ultrasound. The esterification under ultrasonic irradiation using BTBAMBC by solid–liquid phase-transfer catalysis was developed.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(5):1682-1687
A comparative study of the immobilized Candida antarctica lipase B (Novozym 435)-catalyzed acylation of cordycepin with vinyl acetate in ionic liquids (ILs) under ultrasonic irradiation and shaking was conducted. The application of ultrasonic irradiation instead of shaking during acylation resulted in an enhanced reaction rate and a higher level of substrate conversion. Among the various ILs examined, 1-butyl-3-methylimidazolium tetrafluorobrate ([C4MIm][BF4]) was the best medium for the reaction because it produced the highest substrate conversion. In [C4MIm][BF4], the optimal ultrasonic power, water activity, and reaction temperature were 120 W, 0.33, and 50 °C, respectively. The acylation of cordycepin in [C4MIm][BF4] proved to be regioselective under both conditions: the C5′-OH was acylated. Novozym 435 exhibited a much higher operational stability in [C4MIm][BF4], and 58.0% of its original activity was maintained after ten reuse cycles under ultrasonic irradiation. Compared with the cordycepin, the rate of adenosine deaminase-catalyzed deamination was greatly reduced when the 5′-OH was substituted by acetyl group. These results demonstrated that the combined application of ultrasonic irradiation and IL as a medium was an efficient approach for the enzymatic modification of cordycepin.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(5):1714-1721
In this study, nickle/iron (Ni/Fe) nanoparticles were synthesized by liquid phase reductive method in the presence of 20 kHz ultrasonic irradiation to improve nanoparticles’ disparity and avoid agglomeration. The characterized results showed that this method has obviously modified most of the particles in term of sizes and specific surface areas. Meanwhile, the improved nanoscale Ni/Fe particles were employed for the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) as a function of some influential factors (Ni content, Ni/Fe nanoparticles dosage, reaction temperature and initial pH values) and degradation path. Experimental results showed that 2,4-DCP was first adsorbed by Ni/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The application of ultrasonic irradiation for Ni/Fe nanoparticles synthesis was found to significantly enhance the removal efficiency of 2,4-DCP. Consequently, the phenol production rates increased from 68% (in the absence of ultrasonic irradiation) to 87% (in the presence of ultrasonic irradiation) within 180 min. Nearly 96% of 2,4-DCP was removed after 300 min reaction with these optimized conditions: Ni content over Fe0 3 wt%, initial 2,4-DCP concentration 20 mg L−1, Ni/Fe dosage 3 g L−1, initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0737 min−1. This study suggested that the presence of ultrasonic irradiation in the synthesis of nanoscale Ni/Fe particles could be a promising technique to enhance nanoparticle’s disparity and avoid agglomeration.  相似文献   

7.
Micro- and nano-rods and plates of two 3D, porous Zn(II)-based metal–organic frameworks [Zn(oba)(4-bpdh)0.5]n·(DMF)1.5 (TMU-5) and [Zn(oba)(4-bpmb)0.5]n (DMF)1.5 (TMU-6) were prepared by sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction and IR spectroscopy. These MOFs were synthesized using a non-linear dicarboxylate (H2oba = 4,4-oxybisbenzoic acid) and two linear N-donor (4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene and 4-bpmb = N1,N4-bis((pyridin-4-yl)methylene)benzene-1,4-diamine) ligands by ultrasonic irradiation. Sonication time and concentration of initial reagents influencing size and morphology of nano-structured MOFs, were also studied. Calcination of TMU-5 and TMU-6 at 550 °C under air atmosphere yields ZnO nanoparticles. TMU-5 and TMU-6 exhibited maximum percent adsorption of 96.2% and 92.8% of 100 ppm rhodamine B dye, respectively, which obeys first order reaction kinetics.  相似文献   

8.
Herein is reported a one-pot three-step process for the regioselective synthesis of 3,5-disubstituted isoxazoles based on copper(I)-catalyzed cycloaddition reaction between in situ generated nitrile oxides (from the corresponding aldehydes) and alkynes, using ultrasound irradiation, avoiding toxic reagents and solvents and isolation/purification of intermediates.The combined use of 40 kHz ultrasonic bath and 20 kHz probe in the presence of copper turnings reduced reaction time to 1 h and resulted in only one final purification step with increased yields, clearly indicating that there is a dual-frequency synergistic effect.In addition, under metal free conditions, the 1,3-dipolar cycloaddition was regioselective giving low to modest yields.  相似文献   

9.
Titanium dioxide was successfully synthesized by utilizing sol–gel technique modified by incorporation of ultrasound as a reaction aid. The effect of amplitude of irradiation (power input varied from 19.9 to 80.8 W) on % Rutile, % yield, % crystallinity, crystallite size and morphological (scanning electron microscopy) properties of the obtained nano-TiO2 was studied. Calcination temperatures of all the samples were kept constant at 750 °C. With increasing ultrasonic irradiation amplitude it is observed that the values of % Rutile (after calcination) increased and reached a peak value after which further increase in amplitude resulted in a decrease in the % Rutile. A similar trend was observed in the case of % crystallinity and % yield of the reaction. On the basis of these results an optimum operating ultrasonic irradiation amplitude for the reaction has been suitably established.  相似文献   

10.
Nickel based porous solid was synthesized with 20 kHz ultrasonic irradiation. The reaction of Ni(II) nitrate hexahydrate with 1,3,5-benzene tricarboxylic acid in N,N-Dimethylformamide (DMF) as the sole solvent under ultrasonic radiation produced porous Ni-BTC MOF. Choice of correct solvent for the ultrasonic treatment was proven important. The effect of varying ultrasonic powers (40%, 60% and 80% of 750 W) along with different temperature conditions (50 °C, 60 °C, 70 °C and 80 °C) influenced the respective yield. A very high yield of 88% Ni-BTC MOF was obtained from 80% ultrasonic power at 60 °C. BET surface areas of the MOF crystals measured by N2 gas adsorption isotherms were in the range of 960–1000 m2/g.  相似文献   

11.
In the present study, kinetics of synthesis of 2,2-di(prop-2-ynyl)-1H-indene-1,3(2H)-dione was successfully carried out by propargylation of indene-1,3-dione with propargyl bromide using aqueous potassium hydroxide and catalyzed by a newly synthesized phase-transfer catalyst viz., N-benzyl-N-ethyl-N-isopropylpropan-2-ammonium bromide, PTC under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction rate can be greatly enhanced with ultrasound irradiation than without ultrasound.  相似文献   

12.
Pyrazolo[1,5-a]pyrimidines were synthesized via the ultrasonic sonochemical method using the cyclocondensation reaction of 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones [CF3C(O)CH = C(R)(OMe) – where R = Me, Bu, i-Bu, Ph, 4-Me–C6H4, 4-F–C6H4, 4-Cl–C6H4, 4-Br–C6H4, naphth-2-yl and biphen-4-yl] – with 3-amino-5-methyl-1H-pyrazole in the presence of EtOH for 5 min. This methodology has several advantages, for example, it is a simple procedure, it has an easy work-up, mild conditions, short reaction times (5 min) and produces satisfactory yields (61–98%).  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(3):997-1001
The kinetics of pH-independent hydrolysis of 4-methoxyphenyl dichloroacetate were investigated under ultrasonic irradiation with an application of 10% of the maximum power of the equipment and without sonication in acetonitrile–water binary mixtures with a content of acetonitrile ranging from 0.008 to 35 wt.%. Similar kinetic investigations were performed at intensities corresponding to 10%, 20%, 30%, 40%, and 50% of the input energy in solvent mixtures containing 10 wt.% and 25 wt.% acetonitrile. In parallel, the responses of KI and terephthalic acid dosimeters at applied irradiation levels were registered under the same experimental conditions. Significant kinetic sonication effects were found at sound intensities presumably not inducing cavitation in the solution. This result provides an experimental evidence of kinetic effects of ultrasound in the absence of cavitation. A disturbing impact of cavitation on the ultrasonic acceleration of the reaction was found. The implications of these findings were discussed.  相似文献   

14.
In the present research work deals with the preparation of 1-butoxy-4-nitrobenzene was successfully carried out by 4-nitrophenol with n-butyl bromide using aqueous potassium carbonate and catalyzed by a new multi-site phase-transfer catalyst (MPTC) viz., N1,N4-diethyl-N1,N1,N4,N4-tetraisopropylbutane-1,4-diammonium dibromide, under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction greatly enhanced with ultrasound irradiation than without ultrasound. The present study provides a method to synthesize nitro aromatic ethers by ultrasound assisted liquid–liquid multi-site phase-transfer catalysis condition.  相似文献   

15.
In the present work, kinetics of synthesis of 1,3-bis(allyloxy)benzene was successfully carried out by O-allylation of resorcinol with allyl bromide using aqueous potassium hydroxide and catalyzed by a new multi-site phase-transfer catalyst viz., 1,3,5,7-tetrabenzylhexamethylenetetraammonium tetrachloride, MPTC under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction rate can be greatly enhanced to seven fold faster with ultrasound irradiation than without ultrasound. The present study provides a method to synthesize ethers by ultrasound assisted liquid–liquid phase-transfer catalysis condition.  相似文献   

16.
Montmorillonite K-10 and KSF were found to be highly efficient, environmentally friendly and recyclable heterogeneous catalysts for the selective synthesis of a variety of 2-aryl-5,6-dihydro-4H-1,3-oxazines from arylnitriles and 3-amino-1-propanol under ultrasound irradiation. This new methodology provides excellent yields in short reaction times (10–25 min). The reaction work-up is very simple and the catalysts can be easily separated from the reaction mixture and reused several times in subsequent reactions. This catalytic system also exhibits excellent chemoselectivity in the synthesis of mono-oxazines from dinitriles.  相似文献   

17.
Mild and efficient Fischer esterification reactions of lactic acid with a variety of straight chain aliphatic alcohols, cyclohexanol and benzyl alcohol were successfully performed using two novel Brønsted acidic ionic liquids that bear an aromatic sulfonic acid group on the imidazolium or pyridinium cation under ultrasound irradiation. These reactions carried out smoothly with good to excellent conversion rate (78–96%) and satisfactory yields (73–92%) in shorter reaction time (4–6 h) at room temperature when the amount of ionic liquids was 20 mol%. These ionic liquids could be recovered readily and recycled five times without any significant loss in their catalytic activity.  相似文献   

18.
We have previously reported on the morphological control of calcium carbonate by changing synthetic conditions such as temperature, pH and degree of supersaturation in liquid reaction. The present study reports the effect of amplitude and frequency of ultrasonic irradiation on the particle size of calcium carbonate using a horn type ultrasonic apparatus at two different frequencies. The calcium carbonate precipitated by mechanical stirring had a particle size of about 20 μm. By contrast, the particle size of vaterite formed under ultrasonic irradiation was about 2 μm, with a specific surface area of 25–30 m2/g. The major polymorph of calcium carbonate formed by ultrasonic irradiation was vaterite with some calcite present. For 40 kHz ultrasonic irradiation, the specific surface area of the calcium carbonate increased with increasing amplitude. The particle size of vaterite formed at this frequency was about 2 μm, and its distribution was sharper than that obtained at 20 kHz. The mode diameter of the synthesized vaterite was found to decrease with increasing amplitude at 40 kHz.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(5):1615-1617
The efficient synthesis of sixteen 5-arylidene-2,4-thiazolidinediones by aldol condensation reaction of 2,4-thiazolidinedione, mono- and di-substituted arenealdehydes and KOH using ultrasound irradiation is reported. The desired compounds were obtained in a few min (10–30 min) with moderate to good yields (25–81%).  相似文献   

20.
A core–shell-type of meso-SiO2@Fe3O4 microsphere was synthesized via an ultrasonic-assisted surfactant-templating process using solvothermal synthesized Fe3O4 as core, tetraethoxysilane (TEOS) as silica source, and cetyltrimethyl ammonium bromide (CTAB) as templates. The samples were characterized by FT-IR, XRD, TEM, N2 adsorption–desorption technology, and vibrating sample magnetometer (VSM). The results show that as-prepared meso-SiO2@Fe3O4(E) and meso-SiO2@Fe3O4(C) microspheres, treated by acetone extraction and high temperature calcination, respectively, still maintain uniform core–shell structure with desirable mesoporous silica shell. Therein, the meso-SiO2@Fe3O4(E) microspheres possess a distinct pore size distribution in 1.8–3.0 nm with large specific surface area (468.6 m2/g) and pore volume (0.35 cm3/g). Noteworthily, the coating period of this ultrasonic-assisted method (40 min) is much shorter than that of the conventional method (12–24 h). The morphology of microspheres and the mesoporous structure of silica shell are significantly influenced by initial concentration of CTAB (CCTAB), ultrasonic irradiation power (P) and ultrasonic irradiation time (t). The acceleration roles of ultrasonic irradiation take effect during the whole coating process of mesoporous silica shell, including hydrolysis-condensation process of TEOS, co-assembly of hydrolyzed precursors and CTAB, and deposition of silica oligomers. In addition, the use of ultrasonic irradiation is favorable for improving the homogeneity of silica shell and the monodispersity of meso-SiO2@Fe3O4 microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号