首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive and accurate spectrophotometric method has been described for the assay of diphenhydramine hydrochloride (DPH) in raw material and in biological samples. The method is based on extraction of DPH into dichloromethane as ion-pair complexes with patent blue (PB), eriochrome black T (EBT), methyl orange (MO) and bromocresol purple (BCP) in acidic medium. The coloured species exhibited absorption maxima at 632, 514, 428 and 414 nm for PB, EBT, MO and BCP, with molar absorptivity values of 1.32 × 105, 2.36 × 104, 3.68 × 104 and 3.07 × 104 l mol?1 cm?1, respectively. The reaction conditions were optimized to obtain the maximum colour intensity. Beer’s law was obeyed with a good correlation coefficient (0.9982–0.9993) in the concentration ranges 0.5–3, 2.0–16, 2.0–10 and 1.0–10 μg ml?1 for PB, EBT, MO and BCP methods, respectively. The composition ratio of the ion-association complexes was found to be 1:1 in all cases as established by Job’s method. The conditional stability constant (Kf) and the free energy changes (ΔG°) were determined for all complexes formed. The proposed method was successfully applied for the determination of DPH in tablets and human urine with good accuracy and precision. Statistical comparison of the results with those obtained by the official method showed good agreement and indicated no significant difference in accuracy and precision.  相似文献   

2.
Electrochemical methods represent an important class of widely used techniques for the detection of metal ions. The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. This study focused on the synthesis of a nano‐Fe(III)–Sud complex and its characterization using various spectroscopic and analytical tools, optimized using the density functional theory method, screened for antibacterial activity and evaluated for possible binding to DNA using molecular docking study. Proceeding from the collected information, nano‐Fe(III)–Sud was used further for constructing carbon paste and screen‐printed ion‐selective electrodes. The proposed sensors were successfully applied for the determination of Fe(III) ions in various real and environmental water samples. Some texture analyses of the electrode surface were conducted using atomic force microscopy. At optimum values of various conditions, the proposed electrodes responded towards Fe(III) ions linearly in the range 2.5 × 10?9–1 × 10?2 and 1.0 × 10?8–1 × 10?2 M with slope of 19.73 ± 0.82 and 18.57 ± 0.32 mV decade?1 of Fe(III) ion concentration and detection limit of 2.5 × 10?9 and 1.0 × 10?8 M for Fe(III)–Sud‐SPE (electrode I) and Fe(III)–Sud‐CPE (electrode II), respectively. The electrode response is independent of pH in the range 2.0–7.0 and 2.5–7.0, with a fast response time (4 and 7 s) at 25°C for electrode I and electrode II, respectively. Moreover, the electrodes also showed high selectivity and long lifetime (more than 6 and 3 months for electrode I and electrode II, respectively). The electrodes showed good selectivity for Fe(III) ions among a wide variety of metal ions. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

3.
Two simple and highly sensitive spectrophotometric methods were developed for the quantitative determination of the drug sildenafil citrate (SC), Viagra, in pure form and in pharmaceutical formulations, through ion-associate formation reactions (method A) with mono-chromotropic acid azo dyes, chromotrope 2B (I) and chromotrope 2R (II) and ion-pair reactions (method B) with bi-chromotropic acid azo dyes, 3-phenylazo-6-o-carboxyphenylazo-chromotropic acid (III), bis-3,6-(o-hydroxyphenylazo)-chromotropic acid (IV), bis-3,6-(p-N,N-dimethylphenylazo)-chromotropic acid (V) and 3-phenylazo-6-o-hydroxyphenylazo-chromotorpic acid (VI). The reaction products, extractable in methylene chloride, were quantitatively measured at 540, 520, 540, 570, 600 and 575 nm using reagents, I–VI, respectively. The reaction conditions were studied and optimized. Beer's plots were linear in the concentration ranges 3.3–87.0, 3.3–96.0, 5.0–115.0, 2.5–125.0, 8.3–166.7 and 0.8–15.0 μg mL?1 with corresponding molar absorptivities 1.02 × 104, 8.34 × 103, 6.86 × 103, 5.42 × 103, 3.35 × 103 and 2.32 × 104 L mol?1 cm?1 using reagents I–VI, respectively. The limits of detection and Sandell's sensitivities were calculated. The methods were successfully applied to the analysis of commercial tablets (Vigoran) and the recovery study reveals that there is no interference from the common excipients that are present in tablets. Statistical comparison of the results was performed with regard to accuracy and precision using Student's t- and F-tests at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.  相似文献   

4.
Three simple, accurate and sensitive methods (A–C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4–6.0, 0.4–2.8 and 1.2–4.8 μg mL?1 for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16 × 104, 9.95 × 104 and 1.74 × 105 L mol?1 cm?1, for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94–100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test.  相似文献   

5.
Three sensitive and accurate spectrophotometric procedures were developed for the analysis of cephapirine sodium in pure form and in its pharmaceutical formulation. Method A: A kinetic method based on the observation that in acidic medium cephapirine reduces sodium molybdate to molybdenum blue, the absorbance of which is proportional to the amount of antibiotic present at a fixed time of 40 minutes; the formed product was spectrophotometrically measured at 780 nm. The concentration of drug calculated using its calibration by fixed concentration and rate constant methods is feasible with the calibration equations obtained, but the fixed time method proved to be more applicable. Method B is based on chetale formation with palladium(II) chloride in buffered medium as the interaction between metal ions and ligand anions or moleules capable of the formation of complexes which results in the development of colors suitable for the characterization of quantitative determination of metal or ligand. Metals containing easily excited d or f electrons were suitable for the formation of colored complexes. Method C, is based on the formation of colored complex between palladium(II), eosin and cephapirine Na. Sodium lauryl sulphate is used as surfactant to increase the solubility and intensity of the formed complex. Under optimum conditions, the complexes showed maximum absorption at Δ370 and Δ550 for methods B and C, respectively. Apparent molar absorpitivities were 5.2 × 103, 5.5 × 103, 1.4 × 104; Sandell's sensitivities were 1.17 × 10?3, 1.24 × 10?3, 3.1 × 10?3, for methods A, B and C, respectively. The solution of the products obeyed Beer's Law in the concentration ranges 10–70, 20–70, 2–48, μg mL?1 for methods A, B, and C. The proposed methods were applied to the determination of the drug in pure or pharmaceutical preparations. The results obtained were compared statistically with those given by the official method.  相似文献   

6.
A validated kinetic spectrophotometric method has been developed for the determination of losartan potassium in pure and dosage forms. The method is based on oxidation of the losartan potassium with alkaline potassium permanganate at room temperature (25 ± 1 °C). The reaction is followed spectrophotometrically by measuring the increase in absorbance with time at 603 nm, and the initial rate, fixed time (at 12.0 min) and equilibrium time (at 90.0 min) methods are adopted for constructing the calibration graphs. All the calibration graphs are linear in the concentration range of 7.5–60.0 μg mL?1 and the calibration data resulted in the linear regression equations of n? = ?6.422 × 10?7 + 1.173 × 10?5 C, A =3.30 × 10?4 + 5.28 × 10?3 C and A = ?2.09 × 10?2 + 1.05 × 10?1 C for initial‐rate, fixed time and equilibrium time methods, respectively. The limits of detection for initial rate, fixed time and equilibrium time methods are 0.71, 0.21 and 0.19 μg mL?1, respectively. The activation parameters such as Ea, ΔH?, ΔS?, and ΔG? are also determined for the reaction and found to be 87.34 KJ mol?1, 84.86 KJ mol?1, 50.96 JK?1 mol?1 and ?15.10 KJ mol?1, respectively. The variables are optimized and the proposed methods are validated as per ICH guidelines. The method has been applied successfully to the estimation of losartan potassium in commercial tablets. The performance of the proposed methods was judged by calculating paired t‐ and F‐ values. The analytical results of the proposed methods when compared with those of the reference method show no significant difference in accuracy and precision and have acceptable bias.  相似文献   

7.
Electroanalytical methods are highly selective for measuring electrical quantities including the charge, potential and current with their relation to chemical parameters. They are widely applied in various fields such as biochemical analysis, industrial quality control and environmental monitoring. They have many advantages over other techniques in that they are not time consuming and are specific for certain oxidation states of certain elements which give these techniques high selectivity and sensitivity features. This paper is based on two parts: the first part describes the fabrication of screen‐printed electrodes (SPEs) modified with methyl red as electroactive material, while second part describes the preparation and characterization of Fe(II)–methyl red complex using various spectroscopic tools, the complex being used for the construction of carbon paste electrodes (CPEs). The two proposed electrodes were successfully applied for the determination of Fe(II) in water and pharmaceutical (pharovit) samples. The electrodes under investigation show potentiometric response for Fe(II) in the concentration range 8.0 × 10?7–1.0 × 10?2 and 5.0 × 10?7–1.0 × 10?2 M at 25°C for SPE and CPE, respectively, and the electrode response is independent of pH in the range 1.5–7.0. These sensors show Nernstian slopes of 29.1 ± 0.2 and 29.7 ± 0.16 mV decade?1 with detection limit values of 8.0 × 10?7 and 5.0 × 10?7 M for SPE and CPE, respectively. These electrodes show fast response time of 6 and 4 s and exhibit a lifetime of 100 and 30 days for SPE and CPE, respectively. The mechanism of chemical reaction between modifier and Fe(II) on the SPE surface was studied using infrared spectra, scanning electron microscopy and energy‐dispersive X‐ray analysis. The proposed potentiometric method was validated according to the IUPAC recommendations. The results obtained using the proposed sensors were comparable with those obtained with inductively coupled plasma analysis.  相似文献   

8.
《Analytical letters》2012,45(1):80-89
Abstract

Three simple, sensitive, and highly accurate spectrophotometric methods have been developed for the determination of oxomemazine hydrochloride (OXO‐HCl) in bulk and in pharmaceutical formulations. These methods are based on the formation of yellow ion‐pair complexes between the examined drug and bromocresol green (BCG), congo red (CR), and methyl orange (MO) as reagents in universal buffer solution of pH 3.0, 5.5, and 3.5, respectively. The formed complexes were extracted with chloroform and measured at 413, 495, and 484 nm, respectively for the three systems. The best conditions of the reaction were studied and optimized. Beer's law was obeyed in the concentration ranges 2.0–18.0, 2.0–14.0, and 2.0–16.0 µg ml?1 with molar absorptivity of 4.1×104, 1.1×104, and 3.5×104 mol?1cm?1, for the BCG, CR, and MO methods, respectively. Sandell's sensitivity, correlation coefficient, detection, and quantification limits are also calculated. The proposed methods have been applied successfully for the analysis of the drug in pure and in its dosage forms. No interference was observed from common pharmaceutical excipients and additives. Statistical comparison of the results with those obtained by HPLC method shows excellent agreement and indicates no significant difference in accuracy and precision.  相似文献   

9.
The present study describes three simple and sensitive spectrophotometric methods developed for the determination of linezolid (LZD) in pure and tablet forms. These methods are based on the oxidation of LZD by ferric chloride in the presence of 1,10-phenanthroline (method A), or 2,2′-bipyridyl (method B), or potassium ferricyanide (method C). The colored complexes were measured at 510, 522 and 758 nm for methods A, B and C, respectively. In all the methods, the absorbance is found to increase linearly with increasing LZD concentration. Beer’s law is obeyed over the concentration ranges of 0.5–6.0, 0.5–9.0 and 1.0–9.0 μg/mL for methods A, B and C, respectively. The calculated molar absorptivity values are 5.8 × 104, 3.6 × 104 and 4.8 × 104 L/mol cm for methods A, B and C, respectively, and the corresponding Sandell’s sensitivities are 5.8 × 10?3, 9.8 × 10?3 and 7 × 10?3 μg/cm2, respectively. The developed methods are applied successfully to the determination of LZD in the pharmaceutical formulations and the results tallied well with label claims.  相似文献   

10.
Nickel(II) and palladium(II) complexes of monodentate aminophosphine ligands were prepared and characterized. In ethylene oligomerization and subsequent Friedel–Crafts alkylation of toluene, the Ni(II) complexes Ni‐1 and Ni‐2 were activated with aluminium co‐catalysts and generated tandem catalysts with high activities (up to 1.1 × 106 g (mol Ni)?1 h?1) which are comparable with those of previously reported bidentate Ni(II) catalysts. The Pd(II) precatalyst Pd‐1 showed high activities (up to 2.0 × 105 g (mol Pd)?1 h?1) in the polymerization of norbornene.  相似文献   

11.
Acetato, chloro and nitrato Cu(II) complexes of a novel azo compound, namely 2,4‐dihydroxy‐5‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]benzaldehyde, have been prepared. The stoichiometry, stereochemistry and bonding fashion of these copper chelates were deduced via elemental analyses, spectral methods and conductivity and magnetic measurements. Infrared spectral data confirmed the participation of azo N atom and the deprotonated OH group. UV–visible spectral data and magnetic measurements indicated octahedral stereo‐structure for the acetato and nitrato compounds and square planer for the chloro compound. Thermogravimetric analysis was applied to investigate the thermal degradation of the metal chelates. The thermo‐kinetic parameters were computed. The molecular modeling technique was used to support the predicted geometry of the prepared chelates. The interaction between the Cu(II) complexes and calf thymus DNA was studied using two techniques: absorption and viscosity measurements. The values of binding constant obtained from the absorption spectral method were calculated and found to be 4.23 × 104, 26.93 × 104, 13.01 × 104 and 5.36 × 104 M?1 for ligand and acetato, chloro and nitrato complexes, respectively. The antimicrobial activities were evaluated against various bacterial and fungi strains. The in vitro antitumor efficacy of the synthesized compounds was investigated against the HEPG2 cell line.  相似文献   

12.
The development of UV and fluorescence spectrophotometric methods for the quantitative determination of alprazolam in dosage forms using As(III)?SDS system. The two simple and sensitive, spectrophotometric and spectrofluorimetric methods were developed for the determination of alprazolam (ALP) in tablets. These methods are based on formation of ALP?As(III) complex in the presence of SDS. The UV-spectrum of 30% methanolic solution of ALP (5 × 10?5 M) at pH 6.5 (Mclivaine buffer) was run between 200 and 380 nm. The absorption spectrum of ALP exhibits two peaks with a λmax. at 255 nm and a weak band at 325 nm. When the spectra of the drug were run at varying pH in the region 200–380 nm, one isosbestic point at 290 nm was observed, which indicated the presence of two ionic conditions in solution. The complex exhibited an absorption maximum at 265 nm and emission peak at 520 nm with respect to the excitation wavelength of 325 nm. The spectrophotometric method was found to be linear in 8.0–17.0 μg ml?1 range with detection limit of 13.520 μg ml?1, while 0.05–9.5 μg ml?1 range was with detection limit of 1.048 × 10?2 μg ml?1 by spectrofluorimetric method. The mean percentage recovery of the added quantity was found to be 99.54 (spectrophotometric method) and 100.22 (spectrofluorimetric method) and the %RSD are lower than 0.478 and 0.296 determined spectrophotomerically and spectrofluorimtrically, respectively. This indicates that the proposed method is accurate. The apparent ionization constant of ALP was found to be 9.29. The spectra, experimental conditions were set followed by determination stoichiometry, stability constant and thermodynamic parameters of the As(III), Co(II), Ni(II), and Zn(II) complexes with ALP at pH 6.5. The proposed methods have been successfully applied to the assay of ALP in tablets and the results were statistically evaluated.  相似文献   

13.

The present work presented a synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using the aqueous extract of waste banana stem (WBS), Musa paradisiaca Linn. The reduction and formation of MNPs have been characterized by several analysis techniques such as X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The techniques showed that average particle size of WBS-AgNPs and WBS-AuNPs in crystalline nature was in ranges of 7–13 nm and 11–14 nm, respectively. The synthesized nanoparticles were used to evaluate antibacterial activity and catalysis. The WBS-AgNPs showed strong antibacterial activity against B. subtilis and E. coli. The largest zone of inhibition against B. subtilis (14.2 mm) and E. coli (9.3 mm) was found at concentrations of 4.0 ppm and 2.0 ppm, respectively. The excellent catalytic application of both the nanoparticles for the reduction of 4-nitrophenol was confirmed via study on their kinetics. The normalized kinetic constants (knor) of WBS-AgNPs and WBS-AuNPs were found to be 1.72?×?10–3 s?1 mg?1 and 2.45?×?10–3 s?1 mg?1, respectively.

  相似文献   

14.
Two simple, sensitive and economical spectrophotometric methods have been developed for the determination of esomeprazole magnesium in commercial dosage forms. Method A is based on the reaction of esomeprazole magnesium with 5‐sulfosalicylic acid in methanol to form a yellow product, which absorbs maximally at 365 nm. Method B utilizes the reaction of esomeprazole magnesium with N‐bromosuccinimide in acetone‐chloroform medium to form α‐bromo derivative of the drug peaking at 380 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration ranges of 2‐48 and 10‐100 μg mL?1 with molar absorptivity of 2.11 × 104 and 4.57 × 104L mol?1 cm?1 for methods A and B, respectively. The limits of detection for methods A and B are 0.35 and 0.46 μg mL?1, respectively. No interference was observed from excipients commonly present in tablet formulations. Methods A and B are successfully applied to the commercial tablets for the estimation of esomeprazole magnesium with good accuracy and precision. The results compare favorably with the reference spectrophotometric method indicating no significant difference between the methods compared.  相似文献   

15.
The objective of this research was to develop a kinetic spectrophotometric method for determination of moxifloxacine (MOXF) in pure form and pharmaceutical formulations. The method was based on the formation of a colored N-vinyl chlorobenzoquinone derivative of MOXF by its reaction with 2,3,5,6-tetrachloro-1,4-benzoquinone in presence of acetaldehyde.The formation of the colored product was monitored spectrophotometrically by measuring the absorbance at 652 nm. Factors affecting the reaction were studied and optimized. The stoichiometry of the reaction was determined, and the reaction pathway was postulated. The activation energy of the reaction was calculated and found to be 6.65 kJ mol?1. Under the optimized conditions, the initial rate and fixed time (at 5 min) methods were utilized for constructing the calibration graphs. The graphs were linear in concentration ranges 5–100 and 15–150 μg ml?1 with limit of detection of 2.0 and 5.0 μg ml?1 for the initial rate and fixed time methods, respectively. The analytical performance for both methods was fully validated, and the results were satisfactory. No interference was observed from the excipients that are commonly present in the pharmaceutical formulations. The proposed method was successfully applied to the determination of MOXF in its pharmaceutical formulations. The label claim percentages were 101.25 ± 0.73% and 100.92 ± 0.65% for the initial rate and fixed time method, respectively. Statistical comparison of the results with those obtained by a reference spectrophotometric method showed excellent agreement between the accuracy and precision of the two methods. The proposed method has great value in its application to the analysis of MOXF in quality control laboratories.  相似文献   

16.
In this work, the electro-catalytic oxidation of phenol was studied using the aluminum oxide supported onto activated carbon (Al2O3/AC). The later was successfully prepared by impregnating aluminum particles in the activated carbon (AC) using heat treatment. Al2O3/AC was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The electro-catalytic performance of the Al2O3/AC for phenol oxidation was studied using cyclic voltammetry (CV), chronoamperometry, linear sweep voltammetry polarization, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) in 0.1 mol L?1 Na2SO4. It has been shown that the proposed catalyst exhibits remarkably an electro-catalytic performance toward phenol oxidation. Moreover, the oxidation peak currents are linearly dependent on the concentration of phenol in the wide ranges from 1.0 × 10?3 mol L?1 to 1.0 × 10?4 mol L?1 and 8.0 × 10?5 mol L?1 to 1.0 × 10?6 mol L?1 with a detection limit of 1.51 × 10?7 mol L?1 (signal (S) to noise (N) ratio, S/N = 3) and response time of 3 min. The possible interferences were evaluated in 1.0 × 10?5 mol L?1 of phenol. The proposed catalyst also indicated suitable repeatability and stability. Moreover, the proposed Al2O3/AC–CPE has been successfully applied for the phenol analysis in natural waters and olive oil samples with good recoveries.  相似文献   

17.
The prepared and characterized metformin ‐copper (II) complex was used as elecroactive material for modification of a new sensitive and selective modified carbon paste electrode (MCPE) for the potentiometric determination of copper (II) in water samples. The performance characteristics of MCPE were carried out. The electrode showed perfect potentiometric response for Cu (II) over concentration range of 1.0 × 10?6 – 5.0 × 10?2 mol L?1 with a detection limit of 1.0 × 10?6 mol L?1 with divalent slope value 30.8 ± 0.92 mV decade?1 over the pH range of 2–6 and exhibits fast response time of 9 s. Also, this electrode exhibited good selectivity towards Cu (II) ions with respect to other metal ions. The obtained results using the proposed electrode were in a good agreement with those obtained using the inductively coupled plasma (ICP) method.  相似文献   

18.
New Mn(III)‐L and Mn(IV)‐L complexes were prepared from the highly lipophilic salophen ligand (L): phenol 2,2′‐[(4,5‐dimethyl‐1,2‐phenylene)bis[(E)‐nitrilomethylidyne]]bis[4,6‐bis(1,1‐dimethylethyl). The prepared complexes were fully characterized and used for the construction of thiocyanate membrane electrodes. Optimized membrane electrodes contained 33.0 mg PVC, 66.0 mg o‐nitrophenyloctylether, 50 or 5 (mole %) tetrakis(trifluoromethyl)phenyl borate and 1 mg Mn(III)‐L (sensor 2) or Mn‐(IV)‐L (sensor 12), respectively. Such electrodes exhibited linear responses toward thiocynate in a concentration range of 10?1–10?5 M and detection limits of 8.3×10?6, 8.9×10?6 M for sensor 2 and 12, respectively. Optimized membrane electrodes exhbited high selectivty toward thiocayante compared to more lipophilic anions. The observed thiocyanate selectivity of the optimized membranes was confirmed by formation constant calculations for Mn(III)‐L and Mn(IV)‐L with SCN?, β=1014.1 and 1012.5, which was measured potentiometrically using the sandwich membrane method. Furthermore, computational study using DFT calculations was performed to at DFT/B3LYP level of theory to confirm the observed selectivity data. The response times were 3 and 0.5 min for low and high concentrations. The lifetimes of the optimized electrodes were ~4–6 weeks. The analytical utility of the optimized membrane electrodes was demonstrated by the analysis of thiocyanate level in different saliva samples.  相似文献   

19.
Two simple and sensitive high performance liquid chromatographic (HPLC) methods have been developed for the simultaneous determination of three different quinolones: enrofloxacin, lomefloxacin and ofloxacin in their pure and dosage forms, one with reversed phase HPLC and the other with ion-pair HPLC. In reversed phase HPLC, method (A), the mobile phase consists of 2.18% aqueous solution of KH2PO4 with pH adjusted to 2.4 ± 0.2 with acetonitrile (80:20; v/v), the mobile phase pumped at flow rate of 1.2 ml min?1. A Neucleosil C18 column (10 μm, 100 Å), 250 mm length × 4.6 mm diameter was utilized as stationary phase. Detection was affected spectrophotometrically at 294 nm. While in ion-pair HPLC, method (B), the mobile phase was aqueous solution of 0.65% sodium perchlorate and 0.31% ammonium acetate adjusted to pH 2.2 ± 0.2 with orthophosphoric acid: acetonitrile (81:19; v/v), the mobile phase pumped at flow rate of 1.5 ml min?1. A μ bondapack C18 column (10 μm, 100 Å), 250 mm length × 4.6 mm diameter was utilized as stationary phase. Detection was affected spectrophotometrically at 294 nm. Linearity ranges for enrofloxacin, lomefloxacin and ofloxacin were 4.0–108, 7.0–112 and 8.0–113 μg ml?1, respectively using method A and 8.0–112, 7.0–112 and 5.0–105 μg ml?1, respectively applying method B. Minimum detection limits obtained were 0.013, 0.023 and 0.035 μg ml?1 for enrofloxacin, lomefloxacin and ofloxacin, respectively using method A, and 0.028, 0.023 and 0.011 μg ml?1 using method B. The proposed methods were further applied to the analysis of enrofloxacin in injection and tablets containing the ofloxacin and lomefloxacin drugs, and the results were satisfied.  相似文献   

20.
The adsorptive collection of zinc(II) complex with alizarin ligand, coupled with the square-wave voltammetric technique at the hanging mercury drop electrode, yields a very sensitive electroanalytical procedure for the determination of zinc. The optimized experimental conditions include: supporting electrolyte (carbonate buffer), pH (11), alizarin concentration (1 × 10?6 mol l?1), accumulation time (60 s), accumulation potential (?0.1 V), scan rate (700 mV s?1), pulse amplitude (0.06 V) and SW frequency (80 Hz). The monitored stripping voltammetric current was linear over the range of 5 × 10?8 – 4 × 10?7 mol l?1 and the detection limit was 1 × 10?8 mol l?1. The relative standard deviation was calculated as 1.3% (n = 10) for 1 × 10?8 mol l?1 Zn(II) and the obtained electrochemical signal was stabile for up to 60 min. Possible interferences by either co-existing metal ions or other chelating agents were also investigated. The applicability of the proposed SW-AdSV method to the analysis of foodstuff was assessed by the determination of zinc content in instant coffee samples. The accuracy of the obtained voltammetric analytical results was validated by comparing with that obtained by atomic absorption spectrometric method and conducting the necessary statistical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号