首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The motion of a single water droplet in oil under ultrasonic irradiation is investigated with high-speed photography in this paper. First, we described the trajectory of water droplet in oil under ultrasonic irradiation. Results indicate that in acoustic field the motion of water droplet subjected to intermittent positive and negative ultrasonic pressure shows obvious quasi-sinusoidal oscillation. Afterwards, the influence of major parameters on the motion characteristics of water droplet was studied, such as acoustic intensity, ultrasonic frequency, continuous phase viscosity, interfacial tension, and droplet diameter, etc. It is found that when the acoustic intensity and frequency are 4.89 W cm−2 and 20 kHz respectively, which are the critical conditions, the droplet varying from 250 to 300 μm in lower viscous oil has the largest oscillation amplitude and highest oscillation frequency.  相似文献   

2.
Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45–84 W/sq cm) and frequency (22 and 40 kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand + water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source.  相似文献   

3.
In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141 kHz). The applied ultrasonic power was 75 W and the diffused power was calculated as 14.6 W/L. The highest removal was achieved at 575 kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04 min−1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5 min−1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal.  相似文献   

4.
Diacylglycerol (DAG) rich oils have an organoleptic property like that of regular edible oils, but these oils do not tend to be accumulated as fat. Palm oil ranks first in the world in terms of edible oil production owing to its low cost. The aim of this study was to propose a new methodology to produce diacylglycerol by hydrolysis of palm oil using Lipozyme RM IM commercial lipase as a catalyst under ultrasound irradiation. The reactions were carried out at 55 °C with two different methods. First, the reaction system was exposed to ultrasonic waves for the whole reaction time, which led to enzymatic inactivation and water evaporation. Ultrasound was then used to promote emulsification of the water/oil system before the hydrolysis reaction, avoiding contact between the probe and the enzymes. An experimental design was used to optimize the ultrasound-related parameters and maximize the hydrolysis rate, and in these conditions, with a change in equilibrium, DAG production was evaluated.Better reaction conditions were achieved for the second method: 11.20 wt.% (water + oil mass) water content, 1.36 wt.% (water + oil mass) enzyme load, 12 h of reaction time, 1.2 min and 200 W of exposure to ultrasound. In these conditions diacylglycerol yield was 34.17 wt.%.  相似文献   

5.
The present study evaluated inactivation efficiency of a sonophotocatalytic process using ZnO nanofluids including ultrasonic parameters such as power density, frequency and time. The result showed that inactivation efficiency was increased by 20% when ultrasonic irradiation was combined with photocatalytic process in the presence of natural light. Comparison of inactivation efficiency in photocatalytic, ultrasonic and sonocatalytic processes using Escherichia coli as a model bacteria identified that inactivation efficiencies are shown in the following order: ultrasonic irradiation < sonocatalysis < photocatalysis < sonophotocatalysis. Furthermore, inactivation mechanism of sonophotocatalysis was proposed. Studies of reactive oxygen species (ROS) and zinc ions (Zn2+) release evaluation revealed that ROS play a key role in bacterial inactivation rather than Zn2+. Permeability of outer membrane (OM) and inner membrane (IM) of E. coli bacterial cells were studied and exhibited that sonophotocatalysis increased the permeability of OM and IM significantly. The enhanced bacterial inactivation effect in sonophotocatalytic process contributed to acoustic cavitation, sonocatalysis of ZnO and sonoporation phenomenon.  相似文献   

6.
Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60 nm) of the emulsion was obtained at HLB of 14, S/O1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5 min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced.  相似文献   

7.
The ultrasound assisted three phase partitioning (UATPP) is a novel bioseparation method for separation and purification of biomolecules. In the present work, UATPP was investigated for the first time for purification of serratiopeptidase from Serratia marcescens NRRL B 23112. Effect of various process parameters such as ammonium sulphate saturation, t-butanol to crude extract ratio, pH, ultrasonic frequency, ultrasonic intensity, duty cycle and irradiation time were evaluated and optimized. The optimized conditions were found to be as follows: ammonium sulphate saturation 30% (w/v), pH 7.0, t-butanol to crude ratio 1:1 (v/v), ultrasound frequency 25 kHz, ultrasound intensity 0.05 W/cm2, duty cycle 20% and irradiation time 5 min. The maximum purity and recovery obtained from UATPP was 9.4-fold and 96% respectively as compared to the three phase partitioning (TPP) (4.2-fold and 83%). Also the process time for UATPP was significantly reduced to 5 min from 1 h as compared to TPP. The results indicate that, UATPP is an efficient technique for the purification of serratiopeptidase with maximum purity, recovery and reduced processing time.  相似文献   

8.
Source water eutrophication has caused serious problems in drinking water supplies, with enhanced coagulation widely used to remove the resulting algae. This paper investigates the use of sonication to improve the removal by coagulation of Microcystis aeruginosa, a common species of toxic algae. The results show that sonication significantly enhances the reduction of algae cells, solution UV254, and chlorophyll a without increasing the concentration of aqueous microcystins. The main mechanism involved the destruction during ultrasonic irradiation of gas vacuoles inside algae cells that acted as ‘nuclei’ for acoustic cavitation and collapse during the “bubble crush” period, resulting in the settlement of cyanobacteria. Coagulation efficiency depended strongly on the coagulant dose and sonication conditions. When the coagulant dose was 0.5 mg/l, 5 s of ultrasonic irradiation increased algae removal efficiency from 35% to 67%. As further sonication enhanced the coagulation efficiency only slightly due to better mixing, optimal sonication time was 5 s. The most effective sonication intensity was 47.2 W/cm2, and the highest removal ratio of M. aeruginosa was 93.5% by the sonication–coagulation method. Experiments with reservoir water showed that this method could be successfully applied to natural water containing multiple species of algae.  相似文献   

9.
Investigation into newer routes of biodiesel synthesis is a key research area especially due to the fluctuations in the conventional fuel prices and the environmental advantages of biodiesel. The present work illustrates the use of sonochemical reactors for the synthesis of biodiesel from waste cooking oil. Transesterification of used frying oil with methanol, in the presence of potassium hydroxide as a catalyst has been investigated using low frequency ultrasonic reactor (20 kHz). Effect of different operating parameters such as alcohol–oil molar ratio, catalyst concentration, temperature, power, pulse and horn position on the extent of conversion of oil have been investigated. The optimum conditions for the transesterification process have been obtained as molar ratio of alcohol to oil as 6:1, catalyst concentration of 1 wt.%, temperature as 45 °C and ultrasound power as 200 W with an irradiation time of 40 min. The efficacy of using ultrasound has been compared with the conventional stirring approach based on the use of a six blade turbine with diameter of 1.5 cm operating at 1000 rpm. Also the purification aspects of the final product have been investigated.  相似文献   

10.
In this study, mechanisms and efficiency of ammonia–nitrogen removal from aqueous solutions by ultrasonic irradiation were investigated. Depending on the factors affecting the sonication (initial concentration, initial pH, ultrasonic power density and sonication period), sonication tests were carried out and ammonium–nitrogen removal efficiency by ultrasonic irradiation was determined. In these experiments, ammonia–nitrogen removal efficiency was achieved in the range of 8–64%. In short sonication periods, the best ammonia–nitrogen removal efficiency was achieved at pH 8.2–11. Lower ammonia–nitrogen removal efficiency was observed in high initial ammonia–nitrogen concentration of solutions. It was observed that high initial ammonia–nitrogen concentrations may led to decreased ammonia–nitrogen removal efficiency however quantity of ammonia–nitrogen removal was higher. Because high initial concentration had a negative impact on the sonochemical reactions the heat of cavitation bubbles was reduced. Ammonia–nitrogen removal efficiency was increased with ultrasonic density and sonication period. This study showed that effective ammonia–nitrogen removal could be achieved by the ultrasonic irradiation in short sonication periods (as 60–600 s). Specific cost of ammonia–nitrogen removal by the ultrasonic irradiation from simulated ground water, surface water, wastewater and landfill leachate was also calculated. The specific removal cost was varied between 0.01 and 0.25 $/g ammonia–nitrogen.  相似文献   

11.
The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3 liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction.  相似文献   

12.
We have previously reported on the morphological control of calcium carbonate by changing synthetic conditions such as temperature, pH and degree of supersaturation in liquid reaction. The present study reports the effect of amplitude and frequency of ultrasonic irradiation on the particle size of calcium carbonate using a horn type ultrasonic apparatus at two different frequencies. The calcium carbonate precipitated by mechanical stirring had a particle size of about 20 μm. By contrast, the particle size of vaterite formed under ultrasonic irradiation was about 2 μm, with a specific surface area of 25–30 m2/g. The major polymorph of calcium carbonate formed by ultrasonic irradiation was vaterite with some calcite present. For 40 kHz ultrasonic irradiation, the specific surface area of the calcium carbonate increased with increasing amplitude. The particle size of vaterite formed at this frequency was about 2 μm, and its distribution was sharper than that obtained at 20 kHz. The mode diameter of the synthesized vaterite was found to decrease with increasing amplitude at 40 kHz.  相似文献   

13.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

14.
The present study is aimed at enhanced production of a fibrinolytic enzyme from Bacillus sphaericus MTCC 3672 under ultrasonic stimulation. Various process parameters viz; irradiation at different growth phases, ultrasonication power, irradiation duration, duty cycle and multiple irradiation were studied for enhancement of fibrinolytic enzyme productivity. The optimum conditions were found as follows, irradiation of ultrasonic waves to fermentation broth at 12 h of growth phase with 25 kHz frequency, 160 W ultrasound power, 20% duty cycle for 5 min. The productivity of fibrinolytic enzyme was increased 1.82-fold from 110 to 201 U/mL compared with the non sonicated control fermentation. Drop in glucose concentration from 0.41% to 0.12% w/v in ultrasonicated batch implies that, ultrasonication increases the cell permeability, improves substrate intake and progresses metabolism of microbial cell. Microscopic images before and after ultrasonic stimulation clearly signifies the impact of duty cycle on decreasing biomass concentration. However, environmental scanning electron micrograph does not show any cell lysis at optimum ultrasonic irradiation. Offshoots of our results will contribute to fulfill the demand of enhancement of microbial therapeutic enzyme productivity, through ultrasonication stimulation.  相似文献   

15.
Water removal is an essential step during crude oil production due to several problems such as increased transportation costs and high corrosion rate due to dissolved salts. Indirect low frequency ultrasonic energy (US), using baths, has been recently proposed as an effective alternative for crude oil demulsification. However, the reactor position during sonication and its influence on the demulsification efficiency for crude oil has not been evaluated. In this sense, the aim of this study was to develop an automated system based on an open source hardware for mapping the acoustic field distribution in an US bath operating at 35 kHz using a hydrophone. Data acquired with this system provided information to evaluate the demulsification efficiency in the different positions of the US bath and correlate it with the acoustic intensity distribution. The automated 3D-mapping system revealed a higher acoustic intensity in the regions immediately above the transducers (ca. 0.6 W cm−2), while the other regions presented a relatively lower intensity (ca. 0.1 W cm−2). Experimental data demonstrated that reactors positioned in the most intense acoustic regions provided a much higher efficiency of demulsification in comparison with the ones positioned in the less intense acoustic field regions. Demulsification efficiency up to 93% was obtained with 15 min of sonication (100% amplitude) using few amount of chemical demulsifier. Hence, this work demonstrated that the information acquired with the developed mapping system could be used for inducing a higher efficiency of demulsification only by finding the more suitable position of reactor in the US bath, which certainly will help development of appropriate reactors design when looking for such approach.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(3):997-1001
The kinetics of pH-independent hydrolysis of 4-methoxyphenyl dichloroacetate were investigated under ultrasonic irradiation with an application of 10% of the maximum power of the equipment and without sonication in acetonitrile–water binary mixtures with a content of acetonitrile ranging from 0.008 to 35 wt.%. Similar kinetic investigations were performed at intensities corresponding to 10%, 20%, 30%, 40%, and 50% of the input energy in solvent mixtures containing 10 wt.% and 25 wt.% acetonitrile. In parallel, the responses of KI and terephthalic acid dosimeters at applied irradiation levels were registered under the same experimental conditions. Significant kinetic sonication effects were found at sound intensities presumably not inducing cavitation in the solution. This result provides an experimental evidence of kinetic effects of ultrasound in the absence of cavitation. A disturbing impact of cavitation on the ultrasonic acceleration of the reaction was found. The implications of these findings were discussed.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(5):1714-1721
In this study, nickle/iron (Ni/Fe) nanoparticles were synthesized by liquid phase reductive method in the presence of 20 kHz ultrasonic irradiation to improve nanoparticles’ disparity and avoid agglomeration. The characterized results showed that this method has obviously modified most of the particles in term of sizes and specific surface areas. Meanwhile, the improved nanoscale Ni/Fe particles were employed for the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) as a function of some influential factors (Ni content, Ni/Fe nanoparticles dosage, reaction temperature and initial pH values) and degradation path. Experimental results showed that 2,4-DCP was first adsorbed by Ni/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The application of ultrasonic irradiation for Ni/Fe nanoparticles synthesis was found to significantly enhance the removal efficiency of 2,4-DCP. Consequently, the phenol production rates increased from 68% (in the absence of ultrasonic irradiation) to 87% (in the presence of ultrasonic irradiation) within 180 min. Nearly 96% of 2,4-DCP was removed after 300 min reaction with these optimized conditions: Ni content over Fe0 3 wt%, initial 2,4-DCP concentration 20 mg L−1, Ni/Fe dosage 3 g L−1, initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0737 min−1. This study suggested that the presence of ultrasonic irradiation in the synthesis of nanoscale Ni/Fe particles could be a promising technique to enhance nanoparticle’s disparity and avoid agglomeration.  相似文献   

18.
The present work evaluates the performance of ultrasound based sterilization approaches for processing of different fruit and vegetable juices in terms of microbial growth and changes in the quality parameters during the storage. Comparison with the conventional thermal processing has also been presented. A novel approach based on combination of ultrasound with ultraviolet irradiation and crude extract of essential oil from orange peels has been used for the first time. Identification of the microbial growth (total bacteria and yeast content) in the juices during the subsequent storage and assessing the safety for human consumption along with the changes in the quality parameters (Brix, titratable acidity, pH, ORP, salt, conductivity, TSS and TDS) has been investigated in details. The optimized ultrasound parameters for juice sterilization were established as ultrasound power of 100 W and treatment time of 15 min for the constant frequency operation (20 kHz). It has been established that more than 5 log reduction was achieved using the novel combined approaches based on ultrasound. The treated juices using different approaches based on ultrasound also showed lower microbial growth and improved quality characteristics as compared to the thermally processed juice. Scale up studies were also performed using spinach juice as the test sample with processing at 5 L volume for the first time. The ultrasound treated juice satisfied the microbiological and physiochemical safety limits in refrigerated storage conditions for 20 days for the large scale processing. Overall the present work conclusively established the usefulness of combined treatment approaches based on ultrasound for maintaining the microbiological safety of beverages with enhanced shelf life and excellent quality parameters as compared to the untreated and thermally processed juices.  相似文献   

19.
Comparative studies of lipase-catalyzed hydrolysis of soy oil takes place at the interface between the oil and the aqueous solution in solvent-free system were carried out in shaking bath and in ultrasonic bath. The interfacial area between the oil phase and the aqueous phase influences the rate of hydrolysis. Compared to shaking bath, ultrasonic shaking was found to be a more effective procedure to disperse the oil in water. Larger interfacial area and smaller drop size could be obtained in ultrasonic bath. The initial rate of hydrolysis was increased with the increasing of interfacial area. In ultrasonic bath, the highest initial rate of reaction was obtained with the oil volume fraction of 0.7, which was in accord to the highest interfacial area obtained with the oil volume fraction of 0.7, when the ultrasonic power was 1.64 W/cm2. The higher initial rate of hydrolysis was 161 mol/m3 min. The ultrasonic bath was a useful way to disperse soy oil in water to obtain a larger interfacial area, which caused the higher initial rate of soy oil hydrolysis in the solvent-free system.  相似文献   

20.
Ammonium perfluorooctanoate (APFO) is an emerging environmental pollutant attracting significant attention due to its global distribution, high persistence, and bioaccumulation properties. The decomposition of APFO in aqueous solution with a combination of persulfate oxidant and ultrasonic irradiation was investigated. The effects of operating parameters, such as ultrasonic power, persulfate concentration, APFO concentration, and initial media pH on APFO degradation were discussed. In the absence of persulfate, 35.5% of initial APFO in 46.4 μmol/L solution under ultrasound irradiation, was decomposed rapidly after 120 min with the defluorination ratio reaching 6.73%. In contrast, when 10 mmol/L persulfate was used, 51.2% of initial APFO (46.4 μmol/L) was decomposed and the defluorination ratio reached 11.15% within 120 min reaction time. Enhancement of the decomposition of APFO can be explained by acceleration of substrate decarboxylation, induced by sulfate radical anions formed from the persulfate during ultrasonic irradiation. The SO4−•/APFO reactions at the bubble-water interface appear to be the primary pathway for the sonochemical degradation of the perfluorinated surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号