首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2022,33(2):1032-1036
By the replacement of halogen anion, three new multifunctional organic-inorganic hybrid perovskites (thiomorpholinium)PbX3 (X = Cl, Br, I) were successfully synthesized and underwent reversible structural transformation above room temperature, accompanied by the anomalous change of dielectric constant. With the adjustment of the halogen anion from Cl to I in the inorganic skeleton, the space group is transformed from centrosymmetric space group P21/c ((thiomorpholinium)PbCl3) to chiral one P212121 ((thiomorpholinium)PbBr3, (thiomorpholinium)PbI3) at room temperature. The ordered-disordered transition of organic cations and the change of hydrogen bonds with the increase of temperature lead to above-room-temperature phase transitions. Ultraviolet absorption and second-harmonic generation (SHG) measurements confirmed that both the band gap and SHG activity of (thiomorpholinium)PbX3 (X = Cl, Br, I) crystals were tunable. The band gaps reveal a broadening trend with 3.532 eV, 3.410 eV and 3.175 eV along the Cl → Br → I series. This work provides an effective molecular design for multifunctional organic-inorganic perovskites.  相似文献   

2.
A series of triethylammonium halides (Et3NHCl, Et3NHBr, and Et3NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et3NH+ was calculated to be ΔH+ = ?(150.386 ± 4.071) kJ · mol?1 by designing a thermochemical cycle.  相似文献   

3.
4.
Ab initio calculations have been performed to investigate some of the spectroscopic properties, like geometry, frequency, electron affinity, ionization potential and finally adiabatic bond dissociation energies (BDEs) of lead monohalides, lead dihalides and their ions viz. PbX, PbX±, PbX2, PbX2± (X ?= ?F, Cl, Br, I) in their ground state at the QCISD(T)//MP2 level of theory using correlation consistent basis sets. For the validation of MP2 optimized geometry and frequency, we further obtained geometry and frequency of all the neutral and ionic systems using QCISD(T) method with the same basis sets. The BDEs of PbX2 molecules are calculated using the BDEs of PbX2± ions and taking ionization potential and electron affinity of various systems. The calculated values are found in good agreement with the available data. Most of the data for ionic systems are reported first time in literature.  相似文献   

5.
The problem of lead toxicity in perovskites materials that are currently performing with the most efficiency can be partially solved by choosing double perovskites compounds Cs2PbX6 (X = Cl,I), which have considerably reduced lead contents. These materials are slightly more stable, and substituting Cl and I with Br in small percentages further improves their mechanical stability and electronic properties. In this study, the properties of these promising materials were investigated in their pure and mixed forms.  相似文献   

6.
The compounds RuL2HX, where L = PiPr3 and X = Cl or N(SiMe3)2, are catalyst precursors for dimerization of terminal alkynes to enynes and also to cumulenes at 23 °C; selectivity among these products is X-dependent, but not high. Conversion of Ru species onto the catalytic cycle was undetectably small, so alternative approaches to understanding the catalytic mechanism were employed: stoichiometric reactions, independent synthesis of candidate intermediates, and trapping with CO. These show the intermediacy of vinylidenes and vinyl compounds, and reveal conversion of cumulenes to the thermodynamically more stable enynes.  相似文献   

7.
The reactions of dimethyl sulfoxide (DMSO) with XO (X = NO2, Cl, Br, I) have been studied at CCSD/6-311G(d,p)//B3LYP/6-311G(d,p) level. Two reaction channels have been considered: (1) the oxygen-atom transfer (OAT) from XO (X = NO2, Cl, Br, I) to DMSO and (2) the hydrogen-abstraction by XO (X = NO2, Cl, Br, I). The reaction mechanisms of DMSO with NO3, ClO and BrO are similar: the OAT channel is the dominant channel and DMSO2 is the primary product; the hydrogen-abstraction channel is not likely to be competitive with the OAT channel. The DMSO + IO reaction, because two reaction channels have the overall negative reaction activation energies and Gibbs free energies, the reaction could occur on both reaction channels. Furthermore, the formation of the stable complex may vary the yield rate of DMSO2.  相似文献   

8.
Relativistic TDDFT calculations including spin orbit interactions via the ZORA approximation and solvent effects were carried out on the [Mo6X8L6]2− X = Cl, Br, I ; L = F, Cl, Br, I clusters. These calculations indicate that the closely spaced lowest excited states are largely centered on the cubic [Mo6X8]4+ core. Thus, our calculations and the electronic similarities with the strongly luminescent [Mo6Cl8Cl6]2−, [Mo6Br8Br6]2− and [Mo6I8I6]2− clusters, suggest that the clusters [Mo6Cl8F6]2−, [Mo6Br8F6]2−, [Mo6I8F6]2−, [Mo6I8Cl6]2− and [Mo6I8Br6]2− studied here might be also luminescent. The calculated bond energies and reactivity indexes indicate that the most labile clusters are those with axial iodide ligands.  相似文献   

9.
The stereochemistry of ns2np4 (n = 4, 5) lone pair LP characterizing noble gas Kr and Xe (labeled M*) in M*F2 difluorides is examined within coherent crystal chemistry and ab initio visualizations. M*2+ in such oxidation state brings three lone pairs (E) and difluorides are formulated M*F2E3. The analyses use electron localization function (ELF) obtained within density functional theory calculations showing the development of the LP triplets whirling {E3} quantified in the relevant chemical systems. Detailed ELF data analyses allowed showing that in α KrF2E3 and isostructural XeF2E3 difluorides the three E electronic clouds merge or hybridize into a torus and adopt a perfect gyration circle with an elliptical section, while in β KrF2 the network architecture deforms the whole torus into an ellipsoid shape. Original precise metrics are provided for the torus in the different compounds under study. In KrF2 the geometric changes upon β → α phase transition is schematized and mechanisms for the transformation with temperature or pressure are proposed. The results are further highlighted by electronic band structure calculations which show similar features of equal band gaps of 3 eV in both α and β KrF2 and a reorganization of frontier orbitals due to the different orientations of the F-Kr-F linear molecule in the two tetragonal structures.  相似文献   

10.
We have calculated the low-temperature phase diagrams for the ternary alkali halides CsX–LiX (X = F, Cl, Br, I) at an ab initio level without any recourse to experimental information. The starting point of our general approach is the global exploration of the enthalpy landscapes for many different compositions in these systems. Candidates for both ordered stoichiometric modifications and crystalline solid-solution phases are identified, and their free enthalpies are computed at an ab initio level. From this the low-temperature phase diagrams are derived. We find that in all systems under investigation only crystalline ordered phases should be present, in agreement with available experimental data. Furthermore, we predict several new thermodynamically stable and metastable phases in these systems.  相似文献   

11.
Three new tetrahedral rhenium cluster compounds [Re4Se4(PMe2Ph)4Br8]·1.5CH2Cl2 (1), [Re4Te4(PMe2Ph)4Br8]·CH2Cl2 (2), and [Re4Te4(PMe2Ph)4Cl8]·CH2Cl2 (3) have been synthesized by the reaction of the corresponding precursor chalcohalide complexes [Re4Q4(TeX2)4X8] (X = Br, Q = Se (for 1), Te (for 2); X = Cl, Q = Te (for 3)) with dimethylphenylphosphine in CH2Cl2. All compounds have been characterized by X-ray single-crystal diffraction and elemental analyses, IR and 31P NMR spectroscopy. 31P NMR spectroscopy indicates the formation of isomers in solution, confirmed by single-crystal X-ray analysis.  相似文献   

12.
《Solid State Sciences》2007,9(3-4):223-230
Two new cobalt tellurite halides Co5(TeO3)4Cl2 and Co5(TeO3)4Br2 have been synthesized and found to be iso-structural with Ni5(TeO3)4X2 (X = Cl, Br). Co5(TeO3)4X2 crystallizes in the monoclinic system space group C2/c, and the Br-phase has the lattice parameters a = 20.440(1) Å, b = 5.2760(2) Å, c = 16.4710(7) Å, β = 124.790(5)°, and Z = 4. The crystal structures were solved from single-crystal X-ray data, R1 = 1.90 and 1.77, respectively, for the Cl- and Br-phases. The crystal structure is layered with only weak van der Waals' interactions in between the layers. The layers are built by large [Co5O16X2] groups consisting of five edge- and face-sharing Co-octahedra. Each group is connected to adjacent groups via corner sharing through common oxygen atoms as well as through [TeO3E] groups. Magnetic susceptibility measurements on oriented single crystals reveal pronounced anisotropy in a broad temperature range and clear signs of antiferromagnetic ordering at low temperatures. Anisotropic susceptibility of an iso-structural Ni-based compound was also studied and compared with the corresponding results of Co5(TeO3)4X2. Magnetic anisotropy is discussed in framework of single-ion anisotropy effects.  相似文献   

13.
Theoretical calculations were carried out on some neutral nest-shaped heterothiometallic cluster compounds [MOS3Py5Cu3X] (M = Mo, W; X = F, Cl, Br, I) with the high first static hyperpolarizabilities β values. The geometries of these cluster compounds were optimized by the restricted DFT method at B3LYP level with LanL2DZ base set without any constrains. In order to understand the relationship between the first static hyperpolarizabilities and the compositions of these clusters, the frontier orbital compositions and energy gaps between the HOMO and LUMO orbitals were calculated and analysed. In these clusters the HOMO orbitals are mainly composed of halogen atoms and the first static hyperpolarizability increases from F to I atom. The LUMO orbitals of clusters [MoOS3Py5Cu3X] are comprised of Mo, O and S atoms while the LUMO orbitals of clusters [WOS3Py5Cu3X] composed of W atom and pyridine ring. The energy gaps between the HOMO and LUMO orbitals of the clusters [MoOS3Py5Cu3X] are smaller than those of the clusters [WOS3Py5Cu3X]. As a result the first static hyperpolarizability values of the clusters [MoOS3Py5Cu3X] are higher than those of the clusters [WOS3Py5Cu3X].  相似文献   

14.
Cleavage of the Se–Se bond in [2-(Et2NCH2)C6H4]2Se2 (1) with SO2Cl2 (1:1 molar ratio) yielded the organoselenium(II) chloride [2-(Et2NCH2)C6H4]SeCl (2). Treatment of 2 with excess of KX yielded the organoselenium(II) halides [2-(Et2NCH2)C6H4]SeX [X = Br (3), I (4)]. The new compounds 24 were characterized by solution NMR spectroscopy (1H, 13C, 77Se, 2D experiments). The solid-state molecular structures of 2, 2·HCl and 3 were established by single crystal X-ray diffraction. Distorted T-shaped coordination geometries of type (C,N)SeX (X = Cl, Br) and CSeCl2 were found for the neutral halides 2 and 3, and the zwitterionic species [2-{Et2N+(H)CH2}C6H4]SeCl2 ̄ (2·HCl), respectively. DFT calculations were performed on 24 and the related tellurium compounds [2-(Et2NCH2)C6H4]TeX [X = Cl (5), Br (6) and I (7)] in order to elucidate the bond nature and FT-Raman features of this class of organochalcogen(II) derivatives.  相似文献   

15.
Two novel organic–inorganic hybrid polyoxometalates, (X = P, m = 1 1; X = Si, m = 2 2; 2,2′-bpy = 2,2′-bpyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are isostructural, possessing orthorhombic, and the parameters of unit cells for compound 1 are space group Pbca, a = 17.317(4) Å, b = 17.092(3) Å, c = 20.587(4) Å, V = 6445(2) Å3, Z = 4; for compound 2 are space group Pcab, a = 17.181(3) Å, b = 18.198(4) Å, c = 20.672(4) Å, V = 6463(2) Å3, Z = 4. The two compounds show a layer framework constructed from Keggin-polyoxoanion clusters and [Cu (2, 2′-bpy)2]2+ coordination polymer fragments via weak covalent interactions, resulting in a 3D network via supramolecular interactions. Their electrochemical properties are studied in detail.  相似文献   

16.
Photodynamic properties of series of metal complexes having the general formula [M(diars)2X2]ClO4 or BF4 where M = Co3+, Cr3+, Rh3+; X = Cl, Br, I, diars = o-phenylene bis(dimethylarsine) are studied. Photogeneration of singlet oxygen is monitored by both optical and EPR methods. In comparison with rose bengal ((1O2) for RB = 0.76), singlet oxygen generating efficiencies of these complexes are determined. Rate of N,N-dimethyl-4-nitrosoaniline (RNO) bleaching is found to be retarded by specific 1O2 quencher NaN3, confirming the involvement of 1O2 as an active intermediate. Photolysis of these complexes in the presence of spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) generates 12-line EPR spectra, characteristic of O2 adduct. Photogeneration of O2 is also monitored by optical spectroscopy using superoxide dismutase (SOD) inhibitable cytochrome c reduction assay. The results indicate that the [Co(diars)2Br2]ClO4 complex possesses high ability to generate reactive oxygen species (ROS). Both Type I and II paths are involved in the photosensitisation of the metal complexes. The antimicrobial activity of the complexes against selected bacteria is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined and a good correlation between two factors is found. The [CoBr2(diars)2]ClO4 complex investigated in this study effect photo cleavage of the plasmid DNA (pUC18).  相似文献   

17.
The dissociation mechanism of excited CH2X2 (X = Cl, Br) was investigated using charge-inversion mass spectrometry, in which positive ions collide with an alkali metal target to generate neutral fragments, and the negative ions formed from the neutral fragments are mass analyzed. Different relative abundances of the negative ions were observed in the charge-inversion spectra for CH2Cl2 and CH2Br2. The kinetic energy release values calculated from analysis of the peak associated with in the charge-inversion mass spectrum of the parent ion indicate that the excited CH2Cl2 formed by neutralization dissociates spontaneously into CHCl2 + H.  相似文献   

18.
IrH(CO)(PH3)2(C60), IrCl(CO)(PH3)2(C60), and RhH(CO)(PH3)2(C60) were theoretically investigated with DFT and MP2 to MP4(SDQ) methods.  Because the DFT method considerably underestimates the binding energy compared to the MP2 method, their binding energies were evaluated by the ONIOM(MP4(SDQ):UFF) method.  The binding energy decreases in the order IrH(CO)(PH3)2(C60) (59.4) > RhH(CO)(PH3)2(C60) (48.2) > Pt(PH3)2(C60) (47.2) > IrCl(CO)(PH3)2(C60) (43.0), where in parentheses are the binding energy (in kcal/mol) calculated with the ONIOM(MP4(SDQ):UFF) method and that of Pt(PH3)2(C60) was calculated with the same method and the same basis sets in our previous work.  This decreasing order is interpreted in terms of the dπ orbital energy, the d orbital expansion, the presence of the empty dσ orbital, and the distortion energy of the metal fragment induced by the complexation; for instance, the dπ orbital is at higher energy and more expands in IrH(CO)(PH3)2 than in the Rh analogue, which leads to the larger binding energy of IrH(CO)(PH3)2(C60) than that of the Rh analogue. IrCl(CO)(PH3)2 is less favorable than IrH(CO)(PH3)2 because of the lower energy of dπ orbital.  Although the π-back donation is stronger in IrCl(CO)(PH3)2(C60) than in RhH(CO)(PH3)2(C60), the binding energy of IrCl(CO)(PH3)2(C60) is smaller than that of RhH(CO)(PH3)2(C60) due to the larger distortion energy of the IrCl-(CO)(PH3)2 moiety.  Although the dπ orbital of Pt(PH3)2 is at higher energy than that of IrH-(CO)(PH3)2, the binding energy of IrH(CO)(PH3)2(C60) is larger than that of Pt(PH3)2(C60) because the distortion energy is large and the dσ orbital is doubly occupied in Pt(PH3)2(C60).  It is also noted that these binding energies are much larger than those of the ethylene analogues like those of the Pt(0) complexes, which is reasonably interpreted in terms that the LUMO of C60 is at much lower energy than those of ethylene.  相似文献   

19.
The isomerization reactions of HOOX --> HOXO --> HXO2 (X = Cl, Br, I) have been studied by using the density functional theory. The breakage and formation of the chemical bonds of the titled reactions have been discussed by the topological analysis method of electronic density. The calculated results show that there is a transitional structure of a three-membered ring on each of the isomerization reaction paths. The "energy transition state (ETS)" and the "structure transition state (STS)" in all of the studied reactions have been found. In all these reactions, the position of the structure transition state and the scope of the structure transition region correlate well with the reaction energy. The STS appears after the ETS in the exothermic reaction but it appears before the ETS in the endothermic reaction. The less reaction energy there is, the wider scope of the structure transition region.  相似文献   

20.
Synthesis, Properties, and Crystal Structure of Cu3Mo8O23X2 (X = Cl, Br, I) Single crystals of the Cu3Mo8O23X2 compounds were grown by chemical transport reactions at the lower temperature of a gradient 873–823 K without extra transport agent (auto transport). As DTA/TG measurements indicate, the gaseous compounds, necessary for chemical transport reactions, are formed by partial decomposition of Cu3Mo8O23X2 at 873 K. Cu3Mo8O23Br2 crystallizes with the orthorombic space group Pbcm (a = 4.021(1), b = 22.978(2), c = 21.673(2) Å, Z = 4). The crystal structure consists of pentagonal columns 1[Mo6O7O20/2] linked by additional MoO6/2 octahedra. All the polyhedra(pentagonal bipyramide, octahedra) are distorted. Infinite chains 1[Cu3Br2] along [100] are arranged in tunnels with s‐like square shape, left open by the pentagonal columns. Cu3Mo8O23Cl2 (a = 4.010(1), b = 22.942(2), c = 21.639(2) Å) and Cu3Mo8O23I2 (a = 4.052(1), b = 23.075(2), c = 21.719(2) Å) are isotypic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号