首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variations of thermal conductivity with temperature for the Ag–[x] wt% Sn–20 wt% In alloys (x=8, 15, 35, 55 and 70) were measured using a radial heat flow apparatus. From the graphs of thermal conductivity versus temperature, the thermal conductivities of solid phases at their melting temperature for the Ag–[x] wt% Sn–20 wt% In alloys (x=8, 15, 35, 55 and 70) were found to be 46.9±3.3, 53.8±3.8, 61.2±4.3, 65.1±4.6 and 68.1±4.8 W/Km, respectively. The variations of electrical conductivity of solid phases versus temperature for the same alloys were determined from the Wiedemann–Franz equation using the measured values of thermal conductivity. From the graphs of electrical conductivity versus temperature, the electrical conductivities of the solid phases at their melting temperatures for the Ag–[x] wt% Sn–20 wt% In alloys (x=8, 15, 35, 55 and 70) alloys were obtained to be 0.036, 0.043, 0.045, 0.046 and 0.053 (×108/Ωm), respectively. Dependencies of the thermal and electrical conductivities on the composition of Sn in the Ag–Sn–In alloys were also investigated. According to present experimental results, the thermal and electrical conductivities for the Ag–[x] wt% Sn–20 wt% In alloys linearly decrease with increasing the temperature and increase with increasing the composition of Sn.  相似文献   

2.
《Current Applied Physics》2009,9(5):1129-1133
Measurements of In2S3 and ZnIn2S4 sprayed thin films thermal characteristics have been carried out using the photodetection technique. The thermal conductivity k and diffusivity D were obtained using a new protocol based on photothermal signal parameters analysis. Measured values of k and D were respectively, (15.2 ± 0.85) W m−1K−1 and (69.8 ± 7.1) × 10−6 m2s−1 for In2S3, (7.2 ± 0.7) W m−1K−1 and (32.7 ± 4.3) × 10−6 m2s−1 for ZnIn2S4. These values are extremely important since similar compounds are more and more proposed as Cd-free alternative materials for solar cells buffer layers.  相似文献   

3.
The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2–117.6 W/L for 5–15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product.  相似文献   

4.
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model.Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C. butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A. niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C. butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A. niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion’s stability.  相似文献   

5.
The objective of this study was to evaluate the effect of different treatments—heat treatment (HT), sonication (SC), thermosonication (TS), manosonication (MS), manothermal (MT), and manothermosonication (MTS) on Escherichia coli O157:H7, polyphenol oxidase (PPO), and anthocyanin content in blueberry juice. First, samples were treated at different temperatures (30, 40, 50, 60, 70, and 80 °C) and power intensities (280, 420, 560, and 700 W) for 10 min. Subsequently, samples were treated using combinations of power intensity and mild temperature for 10 min. For further study, samples were treated using HT (80 °C), TS (40 °C, 560 W), MT (350 MPa, 40 °C), MS (560 W, 5 min/350 MPa), or MTS (560 W, 5 min, 40 °C/350 MPa, 40 °C) for 5, 10, 15, 20 min for each treatment, and the results compared between treatments. HT significantly reduced PPO activation (2.05% residual activity after only 5 min), and resulted in a 2.00-log reduction in E. coli O157:H7 and an 85.25% retention of anthocyanin. Escherichia coli O157:H7 was slightly inactivated by TS after 5 min (0.17-log reduction), while residual PPO activity was 23.36% and anthocyanin retention was 98.48%. However, Escherichia coli O157:H7 was rapidly inactivated by MTS (5.85-log reduction) after 5 min, while anthocyanin retention was 97.49% and residual PPO activity dropped to 10.91%. The destruction of E. coli cells as a result of these treatments were confirmed using SEM and TEM. Therefore, a combination of sonication, high pressure, and mild heat allows the safety of blueberry juice to be maintained without compromising the retention of desirable antioxidant compounds.  相似文献   

6.
The equilibrated grain boundary groove shapes for solid carbon tetrabromide (CTB) in equilibrium with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, Gibbs–Thomson coefficient (Γ) and solid–liquid interfacial energy (σSL) and grain boundary energy (σgb) of CTB have been determined to be (7.88 ± 0.8) × 10−8 K m, (6.91 ± 1.04) × 10−3 J m−2 and (13.43 ± 2.28) × 10−3 J m−2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for CTB has also been measured to be 0.90 at its melting temperature. The value of σSL for CTB obtained in present work was compared with the values of σSL determined in the previous works for same material and it was seen that the present result is in good agreement with previous works.  相似文献   

7.
This study was aimed at removal of 4-dodecylbenzene sulfonate (DBS) ions from aqueous solutions by ultrasound-assisted adsorption onto the carbonized corn cob (AC). The main attention was focused on modeling the equilibrium and kinetics of adsorption of DBS onto the AC. The AC was prepared from ground dried corn cob by carbonization and activation by carbon dioxide at 880 °C for 2 h in a rotary furnace. The adsorption isotherm data were fitted by the Langmuir model in both the absence and the presence of ultrasound (US). The maximum adsorption capacities of the adsorbent for DBS, calculated from the Langmuir isotherms, were 29.41 mg/g and 27.78 mg/g in the presence of US and its absence, respectively. The adsorption process in the absence and the presence of US obeyed the pseudo second-order kinetics. The intraparticular diffusion model indicated that the adsorption of DBS ions on the AC was diffusion controlled as well as that US promoted intraparticular diffusion. The ΔG° values, ?24.03 kJ/mol, ?25.78 kJ/mol and ?27.78 kJ/mol, were negative at all operating temperatures, verifying that the adsorption of DBS ions was spontaneous and thermodynamically favorable. The positive value of ΔS° = 187 J/mol K indicated the increased randomness at the adsorbent–adsorbate interface during the adsorption of DBS ions by the AC.  相似文献   

8.
Zirconium doped Cu/ZSM-5 catalysts were prepared and characterized in this investigation. Catalytic activity during soot combustion was determined in both O2/He and NO/O2/He atmospheres by temperature-programmed oxidation. The use of zirconium reduces the temperature of maximum soot oxidation rate by 229 °C in O2/He atmosphere and 270 °C in NO/O2/He atmosphere. The promoting effect of zirconium is discussed in terms of surface dispersion, enrichment of active components, and creation of oxygen vacancies where molecular oxygen or NOx is adsorbed forming basic surface oxygen species active for soot oxidation. The NO2 formed at the copper–zirconium interface sites leads to the ignition temperature being significantly decreased to 93 °C, which is inside the exhaust temperature range of diesel engines. To understand the combustion reaction kinetics, the activation energy and reaction order of soot combustion were evaluated. According to the Redhead method, the activation energy for non-catalyzed reaction is 164 kJ/mol under the O2/He atmosphere. For the Cu/ZSM-5 and Cu–Zr/ZSM-5, the activation energies under the O2/He atmosphere (134–151 kJ/mol) are slightly higher than those under the NO/O2/He atmosphere (128–135 kJ/mol). The Freeman–Carroll method is suitable to describe the soot combustion in the NO/O2/He atmosphere, with the activation energies for the catalysts in the range of 97–112 kJ/mol and the average value of reaction order equal to 1.36.  相似文献   

9.
《Current Applied Physics》2010,10(2):687-692
The effect of rapid thermal annealing on the electrical and structural properties of Ni/Au Schottky contacts on n-InP have been investigated by current–voltage (IV), capacitance–voltage (CV), auger electron spectroscopy (AES) and X-ray diffraction (XRD) techniques. The Au/Ni/n-InP Schottky contacts are rapid thermally annealed in the temperature range of 200–500 °C for a duration of 1 min. The Schottky barrier height of as-deposited Ni/Au Schottky contact has been found to be 0.50 eV (IV) and 0.86 eV (CV), respectively. It has been found that the Schottky barrier height decreased with increasing annealing temperature as compared to as-deposited sample. The barrier height values obtained are 0.43 eV (IV), 0.72 eV (CV) for the samples annealed at 200 °C, 0.45 eV (IV) and 0.73 eV (CV) for those at 400 °C. Further increase in annealing temperature to 500 °C the barrier height slightly increased to 0.46 eV (IV) and 0.78 eV (CV) compared to the values obtained for the samples annealed at 200 °C and 400 °C. AES and XRD studies showed the formation of indium phases at the Ni/Au and InP interface and may be the reason for the increase in barrier height. The AFM results showed that there is no significant degradation in the surface morphology (rms roughness of 1.56 nm) of the contact even after annealing at 500 °C.  相似文献   

10.
Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.  相似文献   

11.
Thermography for scientific research and practical purposes requires a series of procedures to obtain images that should be standardized; one of the most important is the time required for acclimatization in the controlled environment. Thus, the objective of this study was to identify the appropriate acclimatization time in rest to reach a thermal balance on young people skin. Forty-four subjects participated in the study, 18 men (22.3 ± 3.1 years) and 26 women (21.7 ± 2.5 years). Thermographic images were collected using a thermal imager (Fluke®), totaling 44 images over a period of 20 min. The skin temperature (TSK) was measured at the point of examination which included the 0 min, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20. The body regions of interest (ROI) analyzed included the hands, forearms, arms, thighs, legs, chest and abdomen. We used the Friedman test with post hoc Dunn’s in order to establish the time at rest required to obtain a TSK balance and the Mann–Whitney test was used to compare age, BMI, body fat percentage and temperature variations between men and women, considering always a significance level of p < 0.05. Results showed that women had significantly higher temperature variations than men (p < 0.01) along the time. In men, only the body region of the abdomen obtained a significant variance (p < 0.05) on the analyzed period, both in the anterior and posterior part. In women, the anterior abdomen and thighs, and the posterior part of the hands, forearms and abdomen showed significant differences (p < 0.05). Based on our results, it can be concluded that the time in rest condition required reaching a TSK balance in young men and women is variable, but for whole body analysis it is recommended at least 10 min for both sexes.  相似文献   

12.
Suspension of nanocrystalline cellulose (NCC) produced from bleached cotton by controlled sulphuric acid hydrolysis was treated with low frequency ultrasound at 20 kHz and 60% amplitude for 0, 1, 2, 5 and 10 min and the effects of sonication on the properties of both the cellulose nanocrystals and their aqueous suspensions were investigated. Furthermore, a series of nanocellulose films were manufactured from the suspensions that were sonicated for different periods of time and tested. Laser diffraction analysis and transmission electron microscopy proved that sonication not only disintegrated the large NCC aggregates (Dv50 14.7 μm) to individual nanowhiskers with an average length and width of 171 ± 57 and 17 ± 4 nm, respectively, but also degraded the nanocrystals and yielded shorter and thinner particles (118 ± 45 and 13 ± 3 nm, respectively) at 10-min sonication. The ultrasound-assisted disintegration to nano-sized cellulose whiskers decreased the optical haze of suspensions from 98.4% to 52.8% with increasing time from 0 to 10 min, respectively. Sonication of the suspensions significantly contributed to the preparation of films with low haze (high transparency) and excellent tensile properties. With the increasing duration of sonication, the haze decreased and the tensile strength rose gradually. Irrespectively of sonication, however, all films had an outstanding oxygen transmission rate in a range of 5.5–6.9 cm3/m2 day, and a poor thermal stability.  相似文献   

13.
Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20 wt%) were formulated (pH  7) using whey protein (3 wt%), three kinds of hydrocolloids (0.1–0.5 wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5 °C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool–heat cyclic method (40 to ?40 °C) was performed to examine stability via crystallization phenomena of the dispersed phase.Ultrasonication energy input duplication from 11 kJ to 25 kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS  1% after 10 days of storage) at 0.5 wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D50 = 0.615 μm compared to D50 = 1.3 μm using method A) with narrower particle size distribution and in viscosity reduction.DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5 wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions.  相似文献   

14.
Effects of thermal and low intensity ultrasound combined with heat (LIUH) pretreatment prior to microwave vacuum drying on enzyme inactivation, color changes and nutrition quality properties of dried daylilies were investigated. The peroxidase (POD), ascorbic acid oxidase (AAO) and polyphenoloxidase (PPO) thermal and LIUH (0.2 and 0.4 W/cm2) inactivation were determined and compared at 70, 80 and 90 °C. Significant reduction in the POD, AAO and PPO activity was seen in daylilies after an ambient LIUH pretreatment than thermal pretreatment. POD, AAO and PPO thermal and LIUH inactivation followed the first order kinetics. LIUH pretreatment had a more positive influence on maintaining color of dried daylilies than thermal pretreatment. Furthermore, LIUH pretreatment resulted in a significant increase in chlorophylls, carotenoids (lutein, zeaxanthin and β-carotene), and a decrease in degree of browning and 5-hydroxymethylfurfural (HMF) when compared with thermal pretreatment. The antioxidant activity and contents of several nutritional components of dried daylilies pretreated by LIUH were also higher than that of dried daylilies pretreated by thermal pretreatment. This study provides a basis for the design of LIUH conditions to control vegetables browning and color changes prior to drying processing.  相似文献   

15.
The effect of 24 kHz, high energy ultrasound in the presence and absence of titanium dioxide particles on the destruction of different bacteria groups was studied. Applying a total of 1500 W/L for 60 min (this corresponds to 5400 kJ/L specific nominal energy), the mean destruction of gram-negative bacteria such as total coliforms, faecal coliforms and Pseudomonas spp. was 99.5%, 99.2% and 99.7%, respectively. More recalcitrant to sonolytic inactivation were the gram-positive bacteria Clostridium perfringens and faecal streptococci with a mean removal of 66% and 84%, respectively. The presence of 5 g/L TiO2 generally enhanced the destruction of gram-negative bacteria, yielding three to five logs reduction. On the other hand, the relatively weak sonochemical inactivation of gram-positive bacteria was only slightly affected by the presence of solid particles. Inactivation was found to follow first-order kinetics regarding bacteria population and was not affected significantly by the wastewater quality. Ultrasound irradiation at 4000 kJ/L specific nominal energy and in the presence of 5 g/L TiO2 achieved less than 103 CFU/100 mL total coliforms, thus meeting USEPA quality standards for wastewater reuse.  相似文献   

16.
17.
The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190–400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 1013/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C4H4S has been determined. At thermal impact energies (Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0(Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0(Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

19.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

20.
The influence of the route via the NCN radical on NO formation in flames was examined from a thermochemistry and reaction kinetics perspective. A detailed analysis of available experimental and theoretical thermochemical data combined with an Active Thermochemical Tables analysis suggests a heat of formation of 457.8 ± 2.0 kJ/mol for NCN, consistent with carefully executed theoretical work of Harding et al. (2008) [5]. This value is significantly different from other previously reported experimental and theoretical values. A combination of an extensively validated comprehensive hydrocarbon oxidation model extended by the GDFkin3.0_NCN-NOx sub-mechanism reproduced NCN and NO mole fraction profiles in a recently characterized fuel-rich methane flame only when heat of formation values in the range of 445–453 kJ/mol are applied. Sensitivity analysis revealed that the sensitivities of contributing steps to NO and NCN formation are strongly dependent on the absolute value of the heat of formation of NCN being used. In all flames under study the applied NCN thermochemistry highly influences simulated NO and NCN mole fractions. The results of this work illustrate the thermochemistry constraints in the context of NCN chemistry which have to be taken into account for improving model predictions of NO concentrations in flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号