首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanoparticles of NiO (NP-NiO) were prepared by a novel sonochemical route from Ni acetate and sodium hydroxide without any requirement of calcinations steps at high temperature and without surfactants. Drop casting of the nanocrystals onto alumina substrates allowed the fabrication of gas sensing devices, which were tested towards NO2 and CO and showed promising results. At low working temperature, the NiO nanoparticles based sensors are selective to nitrogen oxide; in fact a good sensitivity is shown at 200 °C at low concentration (2 ppm), while at temperature above 350 °C, high responses are obtained for carbon monoxide. The results obtained are stimulating for further developing of NP-NiO based sensor devices.  相似文献   

2.
The effect of ultrasound irradiation on molybdenum trioxide has been investigated. Under ultrasonic irradiation, spherical-like MoO3 nanoparticles were obtained, while bulk-like MoO3 nanoparticles were prepared without ultrasonic irradiation. The changes in the physicochemical properties of MoO3 have been investigated using techniques such as X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and ultraviolet and visible spectroscopy (UV-vis). The physicochemical changes of MoO3 due to ultrasound irradiation have been attributed to the sonochemical cavity collapse onto the molybdenum trioxide particles. The ultrasonically prepared particles can also greatly improve the photochromism efficiency.   相似文献   

3.
Sonolysis of carbon dioxide dissolved in water was performed from a standpoint of reducing this material in atmosphere. During one hour of sonication, the amount of CO2 decreased to about half at 5 degrees C under CO2-Ar atmosphere. The decreasing rate for CO2 followed the order Ar > He > H2 > N2 and it was down with increasing temperature in the range of 5-45 degrees C. The most favorable concentration for reducing CO2 was 0.03 (mole fraction of CO2 in gas phase). This concentration in gas phase means an equal mixture of CO2 and Ar in water, because CO2 is more soluble than Ar. Since carbon dioxide dissolved in water would be partly ionized, the roles of ions on the sonolysis were also examined. Gaseous reaction products were CO, H2 and a small amount of O2. Carbon monoxide and hydrogen might be obtained from CO2 and H2O by sonolysis, respectively. Both gases are fuel and react each other to C1 compounds such as methanol, and so on. Therefore, irradiation of ultrasonic waves should be an important technique for reducing CO2.  相似文献   

4.
This study synthesized Fe3O4 nanoparticles of 30–40 nm by a sonochemical method, and these particles were uniformly dispersed on the reduced graphene oxide sheets (Fe3O4/RGO). The superparamagnetic property of Fe3O4/RGO was evidenced from a saturated magnetization of 30 emu/g tested by a sample-vibrating magnetometer. Based on the testing results, we proposed a mechanism of ultrasonic waves to explain the formation and dispersion of Fe3O4 nanoparticles on RGO. A biosensor was fabricated by modifying a glassy carbon electrode with the combination of Fe3O4/RGO and hemoglobin. The biosensor showed an excellent electrocatalytic reduction toward H2O2 at a wide, linear range from 4 × 10?6 to 1 × 10?3 M (R2 = 0.994) as examined by amperometry, and with a detection limit of 2 × 10?6 M. The high performance of H2O2 detection is attributed to the synergistic effect of the combination of Fe3O4 nanoparticles and RGO, promoting the electron transfer between the peroxide and electrode surface.  相似文献   

5.
Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.  相似文献   

6.
NdVO4 nanoparticles are successfully synthesized by efficient sonochemical method using two different structural directing agents like CTAB and P123. The phase formation and functional group analysis are carried out using X-ray diffraction (XRD) and fourier transform infra red (FT-IR) spectra, respectively. Using Scherrer equation the calculated grain sizes are 27 nm, 24 nm and 20 nm corresponding to NdVO4 synthesized by without surfactant, with CTAB and P123, respectively. The TEM images revealed that the shape of NdVO4 particles is rice-like and rod shaped particles while using CTAB and P123 as surfactants. The growth mechanism of NdVO4 nanoparticles is elucidated with the aid of TEM analysis. From electrical analysis, the conductivity of NdVO4 nanoparticles synthesized without surfactant showed a higher conductivity of 5.5703 × 10−6 S cm−1. The conductivity of the material depends on grain size and increased with increase in grain size due to the grain size effect. The magnetic measurements indicated the paramagnetic behavior of NdVO4 nanoparticles.  相似文献   

7.
Hydrophilic magnetite nanoparticles in the size range 30-10 nm are easily and rapidly prepared under ultrasonic irradiation of Fe(OH)2 in di- and tri-ethylene glycol/water solution with volume ratio varying between 7:3 and 3:7.Structural (XRD) and morphological (SEM) characterization reveal good crystalline and homogeneous particles whereas, when solvothermally prepared, the particles are inhomogeneous and aggregated. The sonochemically prepared particles are versatile, i.e. well suited to covalently bind molecules because of the free glycol hydroxylic groups on their surface or exchange the diethylene or triethylene glycol ligand. They can be easily transferred in hydrophobic solvents too.Room-temperature magnetic hysteresis properties measured by means of Vibrating Sample Magnetometer (VSM) display a nearly superparamagnetic character.The sonochemical preparation is easily scalable to meet industrial demand.  相似文献   

8.
Size effect on the internal magnetic structure has been investigated on weakly interacting magnetite (Fe3O4) nanoparticles by ferromagnetic resonance experiments at 9.5 GHz as a function of temperature (4–300 K). A set of three samples with mean particle size of 2.5 nm, 5.0 nm and 13.0 nm, respectively, were prepared by chemical route with narrow size distribution (σ < 0.27). To minimize the dipolar interaction, the particles were dispersed in a liquid and a solid polymer matrix at ∼0.6% in mass. By freezing the liquid suspension with an applied external field, a textured was obtained. Thus, both random and textured suspensions were studied and compared. The ferromagnetic resonance experiments in zero-field-cooled and field-cooled conditions were carried out to study the size effect on the effective anisotropy field. The dc magnetization measurements clearly show that the internal magnetic structure was strongly affected by the particle size.  相似文献   

9.
Stable hydroxyapatite (HAP) nanoparticles system was synthesized from Ca(H(2)PO(4))(2) aqueous solution and saturated Ca(OH)(2) aqueous solution by an improved precipitation method. This method was reformed through using ultrasound irradiation as assistant technology due to its unique chemical reaction effects and adding glycosaminoglycans (GAGs) as regulation additive due to its strong interaction with HAP. The products were characterized by Malvern Zetasizer 3000HS Analysis system, TEM and ED. The size distribution and zeta potential of HAP nanoparticles were influenced by the concentration of GAGs. With the GAGs concentration of 0.35g/L, the better excellent HAP nanoparticle system could be obtained with the number-averaged particle size of 22.2nm in 84.5% area and 54.6nm in 15.5% area between 18.1nm and 117.4nm and the zeta potential of -60.9mV. In the presence of GAGs, the particle size and size distribution are little sensitive to the ultrasound irradiation (UI) time. With the increasing of UI time from 0.5h to 3h and 5h, the particle size increased a little and the crystallinity was improved. GAGs inhibited HAP crystal growth and stabilized HAP nanoparticles. Based on the TEM observation and size distribution determination of HAP nanoparticles, the possible formation mechanism of HAP nanoparticles stabilized by GAGs under UI was discussed.  相似文献   

10.
Some size-dependent characteristics of FeCo nanoparticles are investigated in this paper. The nanoparticles are fabricated using a coprecipitation route and their sizes are controlled by changing the reaction time. Transverse electron microscopy (TEM) images show that the nanoparticles are all spherical with an average size of 2–6 nm. The average size obtained from X-ray diffraction (XRD) measurements is in the range 1–3 nm. Magnetic measurements reveal that the nanoparticles are ordered ferromagnetically and have a high coercivity of about 500 Oe. In our measurements, the coercivity was decreased with decreasing particle size, indicating that the nanoparticles were in a single-domain region. Production of FeCo nanoparticles with high coercivity and fine dimension is highly promising for future recording media technology.  相似文献   

11.
We present the synthesis of M-type strontium hexaferrite by sonochemistry and annealing. The effects of the sonication time and thermal energy on the crystal structure and magnetic properties of the obtained powders are presented. Strontium hexagonal ferrite (SrFe12O19) was successfully prepared by the ultrasonic cavitation (sonochemistry) of a complexed polyol solution of metallic acetates and diethylene glycol. The obtained materials were subsequently annealed at temperatures from 300 to 900 °C. X-ray diffraction analysis shows that the sonochemical process yields an amorphous phase containing Fe3+, Fe2+ and Sr2+ ions. This amorphous phase transforms into an intermediate phase of maghemite (γ-Fe2O3) at 300 °C. At 500 °C, the intermediate species is converted to hematite (α-Fe2O3) by a topotactic transition. The final product of strontium hexaferrite (SrFe12O19) is generated at 800 °C. The obtained strontium hexaferrite shows a magnetization of 62.3 emu/g, which is consistent with pure hexaferrite obtained by other methods, and a coercivity of 6.25 kOe, which is higher than expected for this hexaferrite. The powder morphology is composed of aggregates of rounded particles with an average particle size of 60 nm.  相似文献   

12.
Catalysis covers almost all the chemical reactions or processes aiming for many applications. Sonochemistry has emerged in designing and developing the synthesis of nano-structured materials, and the latest progress mainly focuses on the synthetic strategies, product properties as well as catalytic applications. This current review simply presents the sonochemical effects under ultrasound irradiation, roughly describes the ultrasound-synthesized inorganic nano-materials, and highlights the sonochemistry applications in the inorganics-based catalysis processes including reduction, oxidation, degradation, polymerization, etc. Or all in all, the review hopes to provide an integrated understanding of sonochemistry, emphasize the great significance of ultrasound-assisted synthesis in structured materials as a unique strategy, and broaden the updated applications of ultrasound irradiation in the catalysis fields.  相似文献   

13.
Monodispersed platinum (Pt) nanoparticles were synthesized from reducing hydrated hydrogen hexachloroplatinic acid (H2PtCl6·nH2O) with ethanol in the presence of polyvinylpyrrolidone (PVP) as a steric stabilizer. Concentration of both PVP and ethanol influenced the aggregate structure and crystallite size of the nanoparticles. When the molar ratio of monomeric unit of PVP to Pt, i.e., [PVP]/[Pt], was one, the synthesized Pt particles coagulated pronouncedly into an inter-connected particulate network or self-organized into spherical superstructures with an apparent diameter ranging from 60 to 80 nm, depending on the ethanol concentration. The geometry and structure of these complex aggregates were characterized by fractal analysis. Fractal dimensions of 2.13–2.23 in three dimensions were determined from the Richardson’s plot, which suggests that a reaction-limited cluster–cluster aggregation model (RCLA) was operative. The Pt colloids became apparently more stable when the [PVP]/[Pt] ratio was increased greater than 20. Crystallite size of the Pt nanoparticles was found to increase linearly with the ethanol concentration as the [PVP]/[Pt] was held at one. This suggests that the reduction rate of PtCl6 2− ions in solution is critically important to the synthesized crystallite size.  相似文献   

14.
Dysprosium carbonates nanoparticles were synthesized by the reaction of dysprosium acetate and NaHCO3 by a sonochemical method. Dysprosium oxide nanoparticles with average size about 17 nm were prepared from calcination of Dy2(CO3)3·1.7H2O nanoparticles. Dy(OH)3 nanotubes were synthesized by sonication of Dy(OAC)3·6H2O and N2H4. The as-synthesized nanostructures were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Photoluminescence measurement shows that the nanoparticles have two emission peaks around 17,540 cm?1 and 20,700 cm?1, which should come from the electron transition from 4F9/2  6H15/2 levels and 4F9/2  6H13/2 levels, respectively. The effect of calcination temperature and sonication time was investigated on the morphology and particle size of the products. The sizes could be controlled by the feeding rate of the precipitating agent (NaHCO3 and N2H4) and slower feeding rate lead to smaller nanoparticles.  相似文献   

15.
Polymer-coated magnetic nanoparticles are hi-tech materials with ample applications in the field of biomedicine for the treatment of cancer and targeted drug delivery. In this study, magnetic nanoparticles were synthesized by chemical reduction of FeCl2 solution with sodium borohydride and coated with amine-terminated polyethylene glycol (aPEG). By varying the concentration of the reactants, the particle size and the crystallinity of the particles were varied. The particle size was found to increase from 6 to 20 nm and the structure becomes amorphous-like with increase in the molar concentration of the reactant. The magnetization at 1 T field (M1T) for all samples is > 45 emu/g while the coercivity is in the range of 100-350 Oe. When the ethanol-suspended particles are subjected to an alternating magnetic field of 4 Oe at 500 kHz, the temperature is increased to a maximum normalized temperature (3.8 °C/mg) with decreasing particle size.  相似文献   

16.
Predicting the morphological stability of nanoparticles is an essential step towards the accurate modelling of their chemophysical properties. Here we investigate solid–solid transitions in monometallic clusters of 0.5–2.0 nm diameter at finite temperatures and we report the complex dependence of the rearrangement mechanism on the nanoparticle’s composition and size. The concerted Lipscomb’s Diamond-Square-Diamond mechanisms which connects the decahedral or the cuboctahedral to the icosahedral basins, take place only below a material dependent critical size above which surface diffusion prevails and leads to low-symmetry and defected shapes still belonging to the initial basin.  相似文献   

17.
Cobalt aluminate (CoAl2O4) nanoparticles were synthesized using a precursor method with the aid of ultrasound irradiation under various preparation parameters. The effects of the preparation parameters, such as the sonochemical reaction time and temperature, precipitation agents, calcination temperature and time on the formation of CoAl2O4 were investigated. The precursor on heating yields nanosized CoAl2O4 particles and both these nanoparticles and the precursor were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The use of ultrasound irradiation during the homogeneous precipitation of the precursor reduces the duration of the precipitation reaction. The mechanism of the formation of cobalt aluminate was investigated by means of Fourier transformation infrared spectroscopy (FT-IR) and EDX (energy dispersive X-ray). The thermal decomposition process and kinetics of the precursor of nanosized CoAl2O4 were investigated by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The apparent activation energy (E) and the pre-exponential constant (A) were 304.26 kJ/mol and 6.441 × 1014 s?1, respectively. Specific surface area was investigated by means of Brunauer Emmett Teller (BET) surface area measurements.  相似文献   

18.
Guo J  Zhu S  Chen Z  Li Y  Yu Z  Liu Q  Li J  Feng C  Zhang D 《Ultrasonics sonochemistry》2011,18(5):1082-1090
Using ultrasonication we succeed in a controlled incorporation of TiO(2) nanoparticles on the graphene layers homogeneously in a few hours. The average size of the TiO(2) nanoparticles was controlled at around 4-5 nm on the sheets without using any surfactant, which is attributed to the pyrolysis and condensation of the dissolved TiCl(4) into TiO(2) by ultrasonic waves. The photocatalytic activity of the resultant graphene-TiO(2) composites containing 25 wt.% TiO(2) is better than that of commercial pure TiO(2). This is partly due to the extremely small size of the TiO(2) nanoparticles and partly due to the graphene-TiO(2) composite structure consisting of homogeneous dispersion of crystalline TiO(2) nanoparticles on the graphene sheets. As the graphene in the composites has a very good contact with the TiO(2) nanoparticles it enhances the photo-electron conversion of TiO(2) by reducing the recombination of photo-generated electron-hole pairs.  相似文献   

19.
We prepared Au/gamma-Fe2O3 composite nanoparticles by sonochemically reducing Au(III) ions employing no stabilizer in the aqueous solution to form stable Au nanoparticles and allowing them to attach onto the surface of gamma-Fe2O3 particles with an average size of 21 nm. Size of the formed Au nanoparticle depended on the initial concentration of Au(III) ions. The number of the Au nanoparticles, supported on each gamma-Fe2O3 particle was controlled by changing the relative amounts of Au(III) ions and gamma-Fe2O3 particles. The composite nanoparticles exhibited a high affinity with glutathione, a tripeptide with mercapto group so that separation and manipulation of glutathione in aqueous solutions could be performed by application of external magnetic field. Because the surfaces of the Au nanoparticles were not shielded by any stabilizers, or naked, sonochemically prepared Au/gamma-Fe2O3 composite nanoparticles seemed to show stronger affinity to the glutathione than those by the radiochemical method.  相似文献   

20.
混响场中超声化学效应的研究   总被引:9,自引:0,他引:9  
王双维  莫喜平  冯若  史群 《声学学报》1993,18(2):122-129
本文借助荧光光谱分析法,使用815kHz超声波对小尺度混响场中声化学产额进行了研究。研究发现混响场中的声化学效应有两个特点:一是声空化的阈值声强下降到约0.3W/cm2(行波场为0.7W/cm2);二是声强大于阈值时,声化学产额随声强而增加,随后(声强约为1.69—2.13w/cm2)出现陡然上升的拐点(行波场则趋向饱和)。理论分析表明,阈值下降是由于混响场的声能密度增大;声化学产额随声强变化的拐点则来自于声波辐射压力对液体表面的干扰.为此,本文从实验与理论上证明,为使声化学获得尽可能高的产额应在声化学反应器内建立混响声场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号