首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When using laser interferometer to detect surface acoustic wave at fluid–solid interface, there are two factors which will cause the optical path length variation of the probe laser beam: interface deformation, and refractive index changes in fluid induced by acoustic leakage. Influence of acoustic leakage on laser interferometric detection for surface acoustic wave is researched here. A metal plate immersed in an infinite fluid is used as a physical model. Interface deformation due to laser-induced acoustic wave and pressure in fluid due to acoustic leakage are computed for select cases by finite element method. The optical path length variation caused by the two factors are calculated respectively and compared. The results show that the influence of acoustic leakage increases with the increasing acoustic impedance matching of fluid and solid, the peak-to-peak of influence degree increases linearly with the increasing acoustic impedance of fluid, and that decreasing the distance between the interferometer and interface can effectively reduce the influence of acoustic leakage.  相似文献   

2.
This paper investigates the friction-induced instability and the resulting self-excited vibration of a propeller–shaft system supported by water-lubricated rubber bearing. The system under consideration is modeled with an analytical approach by involving the nonlinear interaction among torsional vibrations of the continuous shaft, tangential vibrations of the rubber bearing and the nonlinear friction acting on the bearing–shaft contact interface. A degenerative two-degree-of-freedom analytical model is also reasonably developed to characterize system dynamics. The stability and vibrational characteristics are then determined by the complex eigenvalues analysis together with the quantitative analysis based on the method of multiple scales. A parametric study is conducted to clarify the roles of friction parameters and different vibration modes on instabilities; both the graphic and analytical expressions of instability boundaries are obtained. To capture the nature of self-excited vibrations and validate the stability analysis, the nonlinear formulations are numerically solved to calculate the transient dynamics in time and frequency domains. Analytical and numerical results reveal that the nonlinear coupling significantly affects the system responses and the bearing vibration plays a dominant role in the dynamic behavior of the present system.  相似文献   

3.
We would like to acknowledge the misprinted terms in our published paper “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel” [Chin. Phys. B 22 124702 (2013)]. Since only two misprints exist and the main results of the published paper are correct, we present the correct equations in this erratum.  相似文献   

4.
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.  相似文献   

5.
6.
Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.  相似文献   

7.
We report experiments on an agarose gel tablet loaded with camphoric acid (c-boat) spontaneously set into motion by surface tension gradients on the water surface. We observe three distinct modes of c-boat motion: harmonic mode where the c-boat speed oscillates sinusoidally in time, a steady mode where the c-boat maintains constant speed, and an intermittent mode where the c-boat maintains near-zero speed between sudden jumps in speed. Whereas all three modes have been separately reported before in different systems, controlled release of Camphoric Acid (CA) from the agarose gel matrix allowed the observation of all the three modes in the same system. These three modes are a result of a competition between the driving (surface tension gradients) and drag forces acting on the c-boat. Moreover we suggest that there exist two time scales corresponding to spreading of CA and boat motion and the mismatch of these two time scales give rise to the three modes in boat motion. We reproduced all the modes of motion by varying the air–water interfacial tension using Sodium Dodecyl Sulfate (SDS).  相似文献   

8.
Spectral and amplitude–time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons were studied experimentally in nitrogen. Intense emission lines of copper atoms, nitrogen atoms, and ions, as well as the first and the second positive systems of nitrogen, NO, and CN, were observed in the regime of repetitively pulsed excitation.  相似文献   

9.
Strontium titanate (SrTiO3) has attracted a lot of attention because of its possible applications in new microelectronic devices. It is a material with a high dielectric constant, low leakage current, and some of its properties can be changed by adding or modifying the concentration of a dopant, which can be used for a wide range of functional purposes, from simple capacitors to complicated microwave devices. Therefore, in this work, we report the development of a new route to synthesize SrTiO3 nanoparticles based on the solvothermal method by employing two precursor solutions: strontium chloride and titanium(IV) butoxide. Our route allows the production of cubic SrTiO3 nanoparticles with a narrow size distribution. The particle sizes range between 8 and 24 nm, forming agglomerates of SrTiO3 in the range of 128–229 nm. It was demonstrated that the Ti/Sr molar ratio employed into the precursor solution has an important effect onto the chemical composition of the resulting SrTiO3 nanoparticles: when using Ti/Sr < 1, the formation and incorporation of the SrCO3 compound into the nanoparticles was observed while with Ti/Sr ≥ 1 nanoparticles are free of contaminants. The as-prepared nanoparticles were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution TEM, selected area electron diffraction, scanning electron microscopy, and dynamic light scattering.  相似文献   

10.
The Richtmyer–Meshkov instability at the interface of solid state tin material and xenon gases under cylinder geometry is studied in this paper. The experiments were conducted at FP-1 facility in Institute of Fluid Physics, China Academy of Engineering Physics(CAEP). The FP-1 facility is a pulsed power driver which could generate high amplitude magnetic field to drive metal liner imploding. Convergent shock wave was generated by impacting a magnetic-driven aluminium liner onto a inner mounted tin liner. The convergent evolution of the disturbance pre-machined onto the tin liner's inner surface was diagnosed by x-radiography. The spike amplitudes were derived from x-ray frames and were compared with linear theory.An analytical model containing material strength effect was derived and matched well to the experimental results. This sensibility of the disturbance evolution to material strength property shines light to the application of Richtmyer–Meshkov instability to infer material strength.  相似文献   

11.
We report direct absorption spectroscopic detection of ozone at ambient pressure with a pulsed, DFB quantum-cascade laser (QCL) tuned within 1044–1050 cm-1 by temperature scanning. Wavelength calibration curves were derived from FTIR and CO2 spectra and interpreted with respect to the heat transfer from the heterostructure to the sink. The laser linewidth (0.13 cm-1 FWHM) was found to decrease with temperature, probably as a result of operation at constant current. Spurious spectral features due to baseline inaccuracies were successfully filtered out from the QCL O3 spectra using differential absorption. Reference O3 concentrations were obtained by applying the same method to UV spectra, simultaneously measured with a differential optical absorption spectrometer (DOAS). Column densities retrieved from QCL spectra are in fairly good agreement (±20%) with the DOAS values above 28 ppmm. The estimated QCL lowest detectable, absolute and differential absorptions, (7×10-3 and 2×10-3, respectively), entail effective detection limits of 14 and 25 ppmm, respectively. Ongoing improvements in the acquisition system should allow the achievement of detection limits at the level of commercial open-path DOAS systems (2 ppmm) in the near future. Our results demonstrate the applicability of the differential absorption method to QCL spectroscopy at ambient pressure, and encourage its use for open path detection. PACS 42.62.Fi; 82.80.Gk; 92.60.Sz  相似文献   

12.
The untwisting of the helical structure of a cholesteric liquid crystal under the action of a magnetic field and a shear flow has been studied theoretically. Both factors can induce the cholesteric–nematic transition independently; however, the difference in the orienting actions of the magnetic field and the shear flow leads to competition between magnetic and hydrodynamic mechanisms of influence on the cholesteric liquid crystal. We have analyzed different orientations of the magnetic field relative to the direction of the flow in the shear plane. In a number of limiting cases, the analytic dependences are obtained for the pitch of the cholesteric helix deformed by the shear flow. The phase diagrams of the cholesteric–nematic transitions and the pitch of the cholesteric helix are calculated for different values of the magnetic field strength and the angle of orientation, the flow velocity gradient, and the reactive parameter. It is shown that the magnetic field stabilizes the orientation of the director in the shear flow and expands the boundaries of orientability of cholesterics. It has been established that the shear flow shifts the critical magnetic field strength of the transition. It is shown that a sequence of reentrant orientational cholesteric–nematic–cholesteric transitions can be induced by rotating the magnetic field in certain intervals of its strength and shear flow velocity gradients.  相似文献   

13.
At the metal–organic film nano-interface, surface polarization phenomena are observed, due to the displacement of excess charges from metal to the films as well as alignment of polar dipoles. Surface potential method has been employed to examine these surface polarization phenomena, and the distribution of space charges and distribution of electronic density of states have been determined. However, for further understanding of the nanometric interface phenomena, it is very helpful to develop an experimental method that can detect electrical and optical phenomena induced by the space charge formation. In this paper, it is shown that optical second harmonic generation measurement is effective through our experiment on phthalocyanine films deposited on Al and Au electrodes.  相似文献   

14.
The nonlinear dynamics of the interface between ideal dielectric fluids in the presence of tangential discontinuity of the velocity at the interface and the stabilizing action of the horizontal electric field is examined. It is shown that the regime of motion of the interface where liquids move along the field lines occurs in the state of neutral equilibrium where electrostatic forces suppress Kelvin–Helmholtz instability. The equations of motion of the interface describing this regime can be reduced to an arbitrary number of ordinary differential equations describing the propagation and interaction of structurally stable solitary waves, viz. rational solitons. It is shown that weakly interacting solitary waves recover their shape and velocity after collision, whereas strongly interacting solitary waves can form a wave packet (breather).  相似文献   

15.
Octyl β-D-glucopyranoside (OGP) has been reported to completely inhibit cavitation-induced cell lysis in vitro, possibly by quenching critical free-radical effects. In this study, the influence of OGP on cell lysis in a 60 rpm rotating-tube exposure apparatus was assessed. HL-60 cell lysis was estimated with a Coulter Multisizer counter. Cavitation activity from the 2.3 MHz, 30 s duration exposures were monitored at the 1.15 MHz subharmonic. Cavitation nucleation was accomplished by addition of an ultrasound contrast agent, or by using freshly dissolved culture media. For both nucleation methods, exposures were conducted for 0-0.7 MPa peak rarefactional pressure-amplitudes with and without 5 mM OGP, and for 0.5 MPa with 0-5 mM OGP. The addition of OGP to the cell suspension medium generally had little influence on cavitation-induced cell lysis. Exposures with no rotation had reduced subharmonic and lysis for added contrast agent, but essentially no cavitation for the fresh medium. Since the decreases or increases in cell lysis found for added OGP generally were accounted for by concomitant decreases or increases in cavitation activity, the changes in cell lysis could be explained by variation of the mechanical effects of cavitation without invoking a critical role for free-radical effects.  相似文献   

16.
Diffuse interface methods have been recently proposed and successfully used for accurate compressible multi-fluid computations Abgrall [1]; Kapila et al. [20]; Saurel et al. [30]. These methods deal with extended systems of hyperbolic equations involving a non-conservative volume fraction equation and relaxation terms. Following the same theoretical frame, we derive here an Eulerian diffuse interface model for elastic solid-compressible fluid interactions in situations involving extreme deformations. Elastic effects are included following the Eulerian conservative formulation proposed in Godunov [16], Miller and Colella [23], Godunov and Romenskii [17], Plohr and Plohr [27] and Gavrilyuk et al. [14]. We apply first the Hamilton principle of stationary action to derive the conservative part of the model. The relaxation terms are then added which are compatible with the entropy inequality. In the limit of vanishing volume fractions the Euler equations of compressible fluids and a conservative hyperelastic model are recovered. It is solved by a unique hyperbolic solver valid at each mesh point (pure fluid, pure solid and mixture cell). Capabilities of the model and methods are illustrated on various tests of impacts of solids moving in an ambient compressible fluid.  相似文献   

17.
Laser-induced breakdown spectroscopy (LIBS) in germane (GeH4), initially at room temperature and pressures ranging from 2 to 10 kPa, was studied using a high-power transverse excitation atmospheric (TEA) CO2 laser (λ=10.653 μm, τ FWHM=64 ns and power densities ranging from 0.28 to 5.52 GW cm−2). The strong emission spectrum of the generated plasma is mainly due to electronic relaxation of excited Ge, H and ionic fragments Ge+, Ge2+ and Ge3+. The weak emission is due to molecular bands of H2. Excitation temperatures of 8100±300 K and 23,500±2500 K were estimated by Ge atomic and Ge+ singly ionized lines, respectively. Electron number densities of the order of (0.7–6.2)×1017 cm−3 were deduced from the Stark broadening of several atomic Ge lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the germane pressure and laser irradiance. Optical breakdown threshold intensities in germane at 10.653 μm have been determined. The mechanism of initiation of the laser-induced plasma in germane has been analyzed.  相似文献   

18.
We observe the third-harmonic generation and second-harmonic generation together with element fluorescence from the interaction of a femtosecond laser filament with a rough surface sample(sandy soil) in non-phasematched directions. The harmonics prove to originate from the phase-matched surface harmonics and air filament, then scatter in non-phase-matched directions due to the rough surface. These harmonics occurr when the sample is in the region before and after the laser filament, where the laser intensity is not high enough to excite the element fluorescence. The observed harmonics are related to the element spectroscopy, which will benefit the understanding of the interaction of the laser filament with a solid and be helpful for the application on filament induced breakdown spectroscopy.  相似文献   

19.
We investigate the death of entanglement and the purity loss of a two qubits–field system in the dispersive regime with a reservoir. For an alternative entanglement measure, we calculate the negativity of the eigenvalues of a partially transposed density matrix and compare it with the mutual entropy. A new measure related to the mutual entropy, namely, the index of entropy, is proposed to measure the degree of entanglement, and this agrees well with the negativity. We found that the entanglement has a strong sensitivity to the phase damping. The asymptotic behavior of the field states, the two qubits, and the total system fall into a mixed state. We treat the phenomena of death of entanglement and purity as they arise from the effect of phase damping.  相似文献   

20.
The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC–10Co–4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC–10Co–4Cr coating had better cavitation erosion–corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC–10Co–4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion–corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC–10Co–4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion–corrosion behavior of both coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号