首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
It is known that silicon fullerenes cannot maintain perfect cage structures like carbon fullerenes. Previous density-functional theory calculations have shown that even with encapsulated species, nearly all endohedral silicon fullerenes exhibit highly puckered cage structures in comparison with their carbon counterparts. In this work, we present theoretical evidences that the tetrahedral fullerene cage Si(28) can be fully stabilized by encapsulating a tetrahedral metallic cluster (Al(4) or Ga(4)). To our knowledge, this is the first predicted endohedral silicon fullerene that can retain perfectly the same cage structure (without puckering) as the carbon fullerene counterpart (T(d)-C(28) fullerene). Density-functional theory calculations also suggest that the two endohedral metallosilicon fullerenes T(d)-M(4)@Si(28) (M=Al and Ga) can be chemically stable because both clusters have a large highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap ( approximately 0.9 eV), strong spherical aromaticity (nucleus-independent chemical shift value of -36 and -44), and large binding and embedding energies.  相似文献   

2.
The interaction between silica surface and water is an important topic in geophysics and materials science, yet little is known about the reaction process. In this study we use first-principles molecular dynamics to simulate the hydrolysis process of silica surface using large cluster models. We find that a single water molecule is stable near the surface but can easily dissociate at three-coordinated silicon atom defect sites in the presence of other water molecules. These extra molecules provide a mechanism for hydrogen transfer from the original water molecule, hence catalyzing the reaction. The two-coordinated silicon atom is inert to the water molecule, and water clusters up to pentamer could be stably adsorbed at this site at room temperature.  相似文献   

3.
In the literature it was found that titanium oxide clusters of a few metal atoms encapsulated inside the micropores of zeolite Y exhibit large blue shifts in the Ti-O ligand-to-metal charge-transfer band as compared to non-encapsulated bulk titanium dioxide particles. This blue shift of the Ti-O absorption band is believed to have a negative effect on the photocatalytic activity of zeolite-encapsulated TiO2. We report here on circumventing this problem and increasing visible-light absorption by means of a red shift of the absorption band caused by addition of some organic molecular modifiers containing acidic OH groups that can strongly bind with titanol groups TiOH. In the studied series of zeolite-encapsulated TiO2 samples, the red shift of the optical spectrum follows the order: catechol > 4-aminobenzoic acid > benzoic acid. Also N-doping of zeolite-encapsulated TiO2 clusters by thermal treatment with urea leads to a red shift of the TiO2 absorption band that depends on the annealing and hydration conditions. By comparison to the degradation of phenol in aqueous solution, we have demonstrated that these changes in the absorption spectrum on addition of the organic modifier are also reflected in the photocatalytic activity of the samples; a greater increase in photocatalytic activity (about 30%) was observed for the additive catechol.  相似文献   

4.
We report on the optical properties (absorption, Raman response) of thin and ultrathin phthalocyanine and amorphous silicon films with incorporated noble metal clusters. The metal clusters cause the typical absorption features originating from their surface plasmon resonance. In ultrathin films, due to the spatially close interface, the plasmon absorption may be displaced from its resonance frequency in the bulk, and its average position may be controlled by the average thickness of the ultrathin optical film. For example, we observe a shift of the plasmon resonance of silver clusters in amorphous silicon films (on fused silica) from 440 nm to 740 nm, when the silicon thickness increases from zero up to 9 nm. The deposition experiments are accompanied by investigations of the film structure, particularly in order to estimate the silver cluster diameter, which is around 3 nm or less.  相似文献   

5.
We have carried out a series of ab initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen-passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure and eventually the stability of alkyl-passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affects their excited state properties. On the basis of our results, we propose that alkyl-terminated quantum dots may be size selected, taking advantage of the change in ionization potential as a function of the cluster size.  相似文献   

6.
We present a strategy for modeling optical probes within heterogeneous environments of restricted dimension. The method is based on a multiphysics approach comprising sequential structure modeling by means of hybrid Car-Parrinello molecular dynamics and property modeling by means of quantum mechanics/molecular mechanics response theory. For demonstration we address the structural and optical properties of nile red within the β-lacto globulin protein. We consider the cases with the probe situated on the surface or within the cavity of the protein, or embedded in a water solvent. We find the absorption properties of the probe to be highly dependent on its position relative to the protein. Structural rearrangements of the optical probe are found to contribute significantly to these environmental effects.  相似文献   

7.
The structures of AgSi(n) (n=1-13) clusters are investigated using first-principles calculations. Our studies suggest that AgSi(n) clusters with n=7 and 10 are relatively stable isomers and that these clusters prefer to be exohedral rather than endohedral. Moreover, doping leaves the inner core structure of the clusters largely intact. Additionally, the plot of fragmentation energies as a function of silicon atoms shows that the AgSi(n) are favored to dissociate into one Ag atom and Si(n) clusters. Alternative pathways exist for n>7 (except n=11) in which the Ag-Si cluster dissociates into a stable Si(7) and a smaller fragment AgSi(n-7). The AgSi(11) cluster dissociates into a stable Si(10) and a small fragment AgSi. Lastly, our analysis indicates that doping of Ag atom significantly decreases the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital for n>7.  相似文献   

8.
We have investigated the high-pressure properties of the molecular crystal para-diiodobenzene, by combining optical absorption, reflectance, and Raman experiments with Car-Parrinello simulations. The optical absorption edge exhibits a large red shift from 4 eV at ambient conditions to about 2 eV near 30 GPa. Reflectance measurements up to 80 GPa indicate a redistribution of oscillator strength toward the near-infrared. The calculations, which describe correctly the two known molecular crystal phases at ambient pressure, predict a nonmolecular metallic phase, stable at high pressure. This high-density phase is characterized by an extended three-dimensional network, in which chemically bound iodine atoms form layers connected by hydrocarbon bridges. Experimentally, Raman spectra of samples recovered after compression show vibrational modes of elemental solid iodine. This result points to a pressure-induced molecular dissociation process which leads to the formation of domains of iodine and disordered carbon.  相似文献   

9.
Many properties of atomic clusters have been found to be size dependent, e.g., the optical response. There are, however, factors other than size that can also play an important role in determining the properties of nanoscale systems. Temperature, in particular, has been shown to have a strong effect on the optical response of open-shell sodium clusters. We incorporate the temperature effect on the optical absorption spectra by combining pseudopotentials, Langevin molecular dynamics, and time-dependent density functional theory. We have done calculations for several open-shell sodium clusters, Na(4) (+), Na(7) (+), and Na(11) (+), for which experimental data are available for comparison. We find that the positions of the lower energy peaks of the calculated spectra correspond very well to the peaks in the experimental spectra, although the local density approximation tends to overestimate the gap of the smaller clusters by up to 0.2 eV and underestimate the gap of the largest cluster by 0.4 eV. We fit the width of the peaks in the lower-temperature calculations to the corresponding experimental result to obtain the instrumental linewidth. We then use this same width for the high-temperature calculations and find very good agreement with experiment. Finally, we analyze the transitions that contribute to the observed peaks in the absorption spectra and we plot the effective valence charge density for specific transitions for each cluster. We find that for the two smaller clusters the absorption spectra are dominated by transitions from the occupied levels to a few (three for Na(4) (+) and five for Na(7) (+)) empty levels, although the contribution from transitions to other empty levels can still be significant. In contrast, the absorption spectra for Na(11) (+) come from a greater mixture of transitions as evidenced in the analysis as well as in the plot of the effective valence charge density.  相似文献   

10.
We investigated photoelectrodes based on TiO(2)-polyheptazine hybrid materials. Since both TiO(2) and polyheptazine are extremely chemically stable, these materials are highly promising candidates for fabrication of photoanodes for water photooxidation. The properties of the hybrids were experimentally determined by a careful analysis of optical absorption spectra, luminescence properties and photoelectrochemical measurements, and corroborated by quantum chemical calculations. We provide for the first time clear experimental evidence for the formation of an interfacial charge-transfer complex between polyheptazine (donor) and TiO(2) (acceptor), which is responsible for a significant red shift of absorption and photocurrent response of the hybrid as compared to both of the single components. The direct optical charge transfer from the HOMO of polyheptazine to the conduction band edge of TiO(2) gives rise to an absorption band centered at 2.3 eV (540 nm). The estimated potential of photogenerated holes (+1.7 V vs. NHE, pH 7) allows for photooxidation of water (+0.82 V vs. NHE, pH 7) as evidenced by visible light-driven (λ > 420 nm) evolution of dioxygen on hybrid electrodes modified with IrO(2) nanoparticles as a co-catalyst. The quantum-chemical simulations demonstrate that the TiO(2)-polyheptazine interface is a complex and flexible system energetically favorable for proton-transfer processes required for water oxidation. Apart from water splitting, this type of hybrid materials may also find further applications in a broader research area of solar energy conversion and photo-responsive devices.  相似文献   

11.
The geometric, electronic, and photoabsorption properties of some hydrogenated silicon clusters are investigated. The density functional theory with generalized gradient approximation fimctional is applied. Our study shows that the geometric structures of them relax with their increasing sizes. Synchronously, the polarizations of Si-H bonds become weak slowly but overlap populations increase. In Mulliken population analysis, we find a distinctive passivation effect (some electrons are transferred from outer Si atoms to the central Si with four-coordinate Si atoms). Owing to the quantum confinement, the energy gap and the lowest excitation energy increase with the decreasing sizes. For nanometer scale cluster, the transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital state is usually prohibited.  相似文献   

12.
用荧光和紫外光谱研究了新合成的含蒽醌(2,6)生色基的单链双亲性分子(ANQU)在水溶液中形成的双分子膜聚集体结构。ANQU在稀水溶液中的吸收光谱比其在乙醇稀溶液中的谱峰有较大的红移;其凝胶态相对于液晶态的吸收谱亦有明显红移。结果表明,ANQU双分子膜中分子的堆积方式是J-聚集,蒽醌生色基以头对尾取向方式排列。变温荧光光谱观察双分子膜中蒽醌生色基的荧光光谱强度和峰位极敏感地受到双分子膜物理状态变化的影响。  相似文献   

13.
Penta- and hexa-coordinated silicon is rare, occurring as a transient species in some glasses, nonaqueous organosilicon solutions and organosilicon gels such as silicone, and is stable at high pressures within the earth in dense phases such as stishovite. The stable form expected in aqueous solution is quadra-coordinated silicon. A recent study proposed the existence of hypercoordinated silicon-polyalcohol complexes in aqueous solution, based on (29)Si NMR shifts at -102 to -103 ppm and -145 to -147 ppm. Here, we report ab initio molecular orbital calculations of (29)Si NMR chemical shifts and relative stabilities of silicon-polyalcohol monocyclic and spirocyclic complexes, from ethylene glycol (C(2)H(6)O(2)) to arabitol (C(5)H(12)O(5)) with Si in quadra-, penta- and hexa-coordination ((Q)Si, (P)Si, (H)Si), calculated at the HF/6-311+G(2d,p)//HF/6-31G* level. Calculated shifts are accurate with a 1-8% error for (Q)Si and 2-9% for (P)Si. Shifts calculated for the hypercoordinated silicon complexes having structures proposed in the literature are much more negative (-128 and -180 ppm for (P)Si and (H)Si) than observed. We propose that cyclic trimers complexed by polyalcohols can explain the -102 ppm shift, where the Si atoms are all (Q)Si, or where two silicons are (Q)Si and one is (P)Si with rapid exchange between the Si sites. The -145 ppm resonance results from structures similar to those proposed in the experimental NMR study for the -102 ppm peak. Our relative stability calculations indicate that structures proposed in the literature for hypercoordinated silicon complexes are thermodynamically unstable in aqueous solution at acidic to neutral conditions but may exist in degrading silicone-gel breast-implants. Thus, aqueous hypercoordinated silicon-polyalcohol complexes are unlikely to play an important role in biological silicon uptake and hold little promise for novel silica synthesis routes from aqueous solutions under nonextreme conditions.  相似文献   

14.
There is great interest in using single-walled carbon nanotubes (SWNTs) as nanoscale probes and sensors in biological electronics and optical devices because the electronic and optical properties of SWNTs are extremely sensitive to the surrounding environments. A well-controlled modification of SWNT surfaces may provide unique interfaces that are sensitive to the biological variables such as pH, glucose, various ions and proteins. In this paper, we report a facile chemical routine to prepare water-soluble SWNTs that still retain their van Hove singularities after acid oxidative treatment. The aqueous solutions (0.03-0.15 mg/mL) are stable for more than a month. The solubility in water for as-treated SWNTs with surfaces modified by carboxylate groups provides us with a unique opportunity to reveal the relationship of the SWNT electronic and optical properties with pH. Here we present the first observation that after surface modification with carboxylate groups, the optical absorption of the first interband transition of as-treated water-soluble semiconducting SWNTs reversibly responds to the pH change in aqueous solutions. Our results indicate that surface modification of SWNTs is a promising way for preparing chemically selective SWNT interfaces, which may open new exciting opportunities for various applications.  相似文献   

15.
Based on first-principle molecular dynamic simulations, we calculate the far-infrared spectra of small water clusters (H(2)O)(n) (n = 2, 4, 6) at frequencies below 1000 cm(-1) and at 80 K and at atmospheric temperature (T>200 K). We find that cluster size and temperature affect the spectra significantly. The effect of the cluster size is similar to the one reported for confined water. Temperature changes not only the shape of the spectra but also the total strength of the absorption, a consequence of the complete anharmonic nature of the classical dynamics at high temperature. In particular, we find that in the frequency region up to 320 cm(-1), the absorption strength per molecule of the water dimer at 220 K is significantly larger than that of bulk liquid water, while tetramer and hexamer show bulklike strengths. However, the absorption strength of the dimer throughout the far-infrared region is too small to explain the measured vapor absorption continuum, which must therefore be dominated by other mechanisms.  相似文献   

16.
The behaviors of the bimetal Mo-Mo doped cagelike silicon clusters Mo2Sin at the size of n=9-16 have been investigated systematically with the density functional approach. The growth-pattern behaviors, relative stabilities, and charge-transfer of these clusters are presented and discussed. The optimized geometries reveal that the dominant growth patterns of the bimetal Mo-Mo doped on opened cagelike silicon clusters (n=9-13) are based on pentagon prism MoSi10 and hexagonal prism MoSi12 clusters, while the Mo2 encapsulated Sin(n=14-16) frames are dominant growth behaviors for the large-sized clusters. The doped Mo2 dimer in the Sin frames is dissociated under the interactions of the Mo2 and Sin frames which are examined in term of the calculated Mo-Mo distance. The calculated fragmentation energies manifest that the remarkable local maximums of stable clusters are Mo2-doped Sin with n=10 and 12; the obtained relative stabilities exhibit that the Mo2-doped Si10 cluster is the most stable species in all different sized clusters. Natural population analysis shows that the charge-transfer phenomena appearing in the Mo2-doped Sin clusters are analogous to the single transition metal Re or W doped silicon clusters. In addition, the properties of frontier orbitals of Mo2-doped Sin (n=10 and 12) clusters show that the Mo2Si10 and Mo2Si12 isomers have enhanced chemical stabilities because of their larger HOMO-LUMO gaps. Interestingly, the geometry of the most stable Mo2Si9 cluster has the framework which is analogous to that of Ni2Ge9 cluster confirmed by recent experimental observation (Goicoechea, J. M.; Sevov, S. C. J. Am Chem. Soc. 2006, 128, 4155).  相似文献   

17.
The size distribution and molecular structure of water clusters play a critical role in the chemical, biological and atmospheric process. The common experimental study of water clusters in aqueous solution is challenged due to the influence of local Hbonding environments on vibration spectroscopies or vacuum requirements for most mass spectrometry technologies. Here, the time-of-flight secondary ion mass spectrometry (ToF-SIMS) combining with a microfluidic chip has been applied to achieve the in-situ discrimination of the size distribution for water clusters in liquid water at room temperature. The results demonstrated that the presented method is highly system stable, reproducible and accurate. The comparison of heavy water with pure water was made to further demonstrate the accuracy of this technique. These results showed that (H2O)3H+ and (D2O)4D+ are the most dominant clusters in pure and heavy water, respectively. This one water molecule difference in the dominant cluster size may due to the nuclear quantum effects on water’s hydrogen bonded network. It is the first time to experimentally show the size distribution of water clusters over a wide range (n=1–30) for pure (H2O) and heavy (D2O) water from molecular level. This technique provides an achievable method for liquid water, which offers a bridge to close the gap between theoretical and experimental study of water cluster in aqueous solution.  相似文献   

18.
Aqueous solutions of 1:1 strong electrolytes are considered to be the prototype for complete ionic dissociation. Nonetheless, clustering of strong 1:1 electrolytes has been widely reported in all atom molecular dynamics simulations, and their presence is indirectly implicated in a diverse range of experimental results. Is there a physical basis for nonidealities such as ion pairing and cluster formation in aqueous solutions of strong 1:1 electrolytes? We attempt to answer this question by direct comparison of results from detailed molecular dynamics simulations to experimentally observed properties of 1:1 electrolytes. We report the analysis of a series of lengthy molecular dynamics simulations of alkali-halide solutions carried out over a wide range of physiologically relevant concentrations using explicit representations of water molecules. We find evidence for pronounced nonideal behavior of ions at all concentrations in the form of ion pairs and clusters which are in rapid equilibrium with dissociated ions. The phenomenology for ion pairing seen in these simulations is congruent with the multistep scheme proposed by Eigen and Tamm based on data from ultrasonic absorption experiments. For a given electrolyte, we show that the dependence of cluster populations on concentration can be described through a single set of equilibrium constants. We assess the accuracy of calculated ion pairing constants by favorable comparison to estimates obtained by Fuoss and co-workers and based on conductometric experiments. Ion pairs and clusters form on length scales where the size of individual water molecules is as important as the hard core radius of ions. Ion pairing results as a balance between the favorable Coulomb interactions and the unfavorable partial desolvation of ions needed to form a pair.  相似文献   

19.
We use molecular dynamics simulations to investigate structure and dynamics of fructose aqueous solutions in the 1-5 M concentration range at ambient conditions. We analyze hydration structures, H-bond statistics, and size distribution of H-bonded carbohydrate clusters as functions of concentration. We find that the local tetrahedral order of water is reasonably well-preserved and that the solute tends to appear as scattered "isolated" molecules at low concentrations and as H-bonded clusters for less diluted solutions. The sugar cluster size distribution exhibits a sharp transition to a percolated cluster between 3.5 and 3.8 M. The percolated cluster forms an intertwined network of H-bonded saccharides that imprisons water. For the dynamics, we find good agreement between simulation and available experimental results for the self-diffusion coefficients. Water librational dynamics is little affected by sugar concentration, whereas reorientational relaxation is described by a concentration-independent bulk-like component attributed to noninterfacial water molecules and a slower component (strongly concentration dependent) that arises from interfacial solvent molecules and, hence, depends on the dynamics of the cluster structure itself. Analysis of H-bonding survival probability functions indicates that the formation of carbohydrate clusters upon increasing concentration enhances the H-bond relaxation time and slows down the entire system dynamics. We find that multiexponential or stretched-exponential fits alone cannot describe the H-bond survival probabilities for the entire postlibrational time span of our data (0.1-100 ps), as opposed to a combined stretched-plus-biexponential function, which provides excellent fits. Our results suggest that water dynamics in concentrated fructose solutions resembles in many ways that of protein hydration water.  相似文献   

20.
Electric-field-induced transient pore formation (electroporation) in synthetic unilamellar vesicles is utilized for the preparation of subnanometer size uncapped gold quantum dots. With the precursor AuCl4(-) placed in the aqueous bulk solution and the reducing agent BH4(-) originally entrapped in the vesicles' compartments, the redox reaction--that occurs in the bulk--is initiated by the opening of transient pores in the vesicles' bilayers. The absence of caps permits (i) continued growth of the Au clusters formed, (ii) the assessment of their true absorption spectra unaltered by stabilizing ligands, and (iii) the previously inaccessible live observation of the growth of the clusters in the molecular size regime. The normally rapid self-aggregation of Au atoms is slowed to the time scales of hour and week by their adsorption at the exterior surface of the vesicles. The UV spectra exhibit novel, time-dependent, oscillating red and blue shifts of the characteristic absorption band, which can be attributed to the evolution of cluster size transiently halting at magic aggregation numbers corresponding to Au2, Au8, Au20, and Au34. Subsequent growth is associated with a monotonic red shift of the absorption band up to the characteristic surface plasmon absorption at 520 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号