首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.  相似文献   

2.
《Electrophoresis》2018,39(16):2069-2082
High‐resolution capillary zone electrophoresis – mass spectrometry (CZE‐MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle‐down and intact CZE‐MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post‐translational modifications (PTMs) and glycosylation structures. Middle‐down and intact CZE separations were performed in an acidified methanol‐water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle‐down analysis of the IdeS‐digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X‐deamidated, 1X‐deamidated, and non‐deamidated forms at baseline resolution. In the course of the middle‐down CZE‐MS analysis, separation of glycoforms of the FC/2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE‐MS2. Incorporation of TCEP‐HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE‐MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X‐glycosylated, 1X‐glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE‐MS represents a complementary approach to the more conventional liquid‐chromatography – mass spectrometry‐based approaches.  相似文献   

3.
Protein posttranslational modifications (PTMs) perform essential roles in the biological regulation of a cell. PTMs are extremely important because they can change a protein's physical or chemical properties, conformation, activity, cellular location, or stability. In fact, most proteins are altered by the addition or removal of a chemical moiety on either an amino acid or the protein's N- or C-terminus. Some PTMs can be added and removed dynamically as a mechanism for reversibly controlling protein function. Thus, identifying the PTM sites is critical to fully understand the biological roles of any given protein. Mass spectrometry (MS) is a widely used analytical strategy to identify PTMs. We have used an automated two-dimensional liquid chromatography (LC) system coupled with electrospray ionization quadrupole ion-trap MS to identify PTMs for indoleamine 2,3-dioxygenase 1 (IDO1), one of the tryptophan catabolic enzymes. IDO1 promotes immune tolerance by suppressing local T-cell responses under various physiological and pathophysiological conditions, such as pregnancy in mammals, tumor resistance, autoimmunity, and chronic inflammation. Although many studies have demonstrated the biological importance of IDO activity, the PTMs of IDO enzymes remain largely unknown. Only a few important PTMs of IDO1 have been found, such as nitration, N-terminal acetylation, and phosphorylation. In this review, we analyze the PTMs of IDO1 using our two-dimensional LC-MS/MS system, and provide an overview of our current understanding.  相似文献   

4.
For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches.  相似文献   

5.
The generation of gaseous polyanions with a Coulomb barrier has attracted attention as exemplified by previous studies of fullerene dianions. However, this phenomenon has not been reported for biological anions. By contrast, electron attachment to multiply charged peptide and protein cations has seen a surge of interest due to the high utility for tandem mass spectrometry (MS/MS). Electron capture dissociation (ECD) and electron transfer dissociation (ETD) involve radical-driven fragmentation of charge-reduced peptide/protein cations to yield N-C(α) backbone bond cleavage, resulting in predictable c'/z(?)-type product ions without loss of labile post-translational modifications (PTMs). However, acidic peptides, e.g., with biologically important PTMs such as phosphorylation and sulfonation, are difficult to multiply charge in positive ion mode and show improved ionization in negative-ion mode. We found that peptide anions ([M - nH](n-), n ≥ 1) can capture electrons within a rather narrow energy range (~3.5-6.5 eV), resulting in charge-increased radical intermediates that undergo dissociation analogous to that in ECD/ETD. Gas-phase zwitterionic structures appear to play an important role in this novel MS/MS technique, negative-ion electron capture dissociation (niECD).  相似文献   

6.
The difficulties to detect intact noncovalent complexes involving proteins and peptides by MALDI-TOF mass spectrometry have hindered a widespread use of this approach. Recently, "intensity fading MS" has been presented as an alternative strategy to detect noncovalent interactions in solution, in which a reduction in the relative signal intensity of low molecular mass binding partners (i.e., protease inhibitors) can be observed when their target protein (i.e., protease) is added to the sample. Here we have performed a systematic study to explore how various experimental conditions affect the intensity fading phenomenon, as well as a comparison with the strategy based on the direct detection of intact complexes by MALDI MS. For this purpose, the study is focused on two different protease-inhibitor complexes naturally occurring in solution, together with a heterogeneous mixture of nonbinding molecules derived from a biological extract, to examine the specificity of the approach, i.e., those of carboxypeptidase A (CPA) bound to potato carboxypeptidase inhibitor (PCI) and of trypsin bound to bovine pancreatic trypsin inhibitor (BPTI). Our results show that the intensity fading phenomenon occurs when the binding assay is carried out in the sub-muM range and the interacting partners are present in complex mixtures of nonbinding compounds. Thus, at these experimental conditions, the specific inhibitor-protease interaction causes a selective reduction in the relative abundance of the inhibitor. Interestingly, we could not detect any gaseous noncovalent inhibitor-protease ions at these conditions, presumably due to the lower high-mass sensitivity of MCP detectors.  相似文献   

7.
A high-performance liquid chromatography (HPLC) method with on-line coupled ultraviolet (UV), mass spectrometry (MS) and biochemical detection for acetylcholinesterase (AChE) inhibitory activity has been developed. By combining the separation power of HPLC, the high selectivity of biochemical detection, and the ability to provide molecular mass and structural information of MS, AChE inhibitors can be rapidly identified. The biochemical detection was based on a colorimetric method using Ellman's reagent. The detection limit of galanthamine, an AChE inhibitor, in the HPLC-biochemical detection is 0.3 nmol. The three detector lines used, i.e., UV, MS and Vis for the biochemical detection were recorded simultaneously and the delay times of the peaks obtained were found to be consistent. This on-line post-column detection technique can be used for the identification of AChE inhibitors in plant extracts and other complex mixtures such as combinatorial libraries.  相似文献   

8.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

9.
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer??s disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8?% and 15?% for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.  相似文献   

10.
Post-translational modifications (PTMs) (e.g., acetylation, methylation, and phosphorylation) play crucial roles in regulating the diverse protein-protein interactions involved in essentially every cellular process. While significant progress has been made to detect PTMs, profiling protein-protein interactions mediated by these PTMs remains a challenge. Here, we report a method that combines a photo-cross-linking strategy with stable isotope labeling in cell culture (SILAC)-based quantitative mass spectrometry to identify PTM-dependent protein-protein interactions. To develop and apply this approach, we focused on trimethylated lysine-4 at the histone H3 N-terminus (H3K4Me(3)), a PTM linked to actively transcribed gene promoters. Our approach identified proteins previously known to recognize this modification and MORC3 as a new protein that binds H3M4Me(3). This study indicates that our cross-linking-assisted and SILAC-based protein identification (CLASPI) approach can be used to profile protein-protein interactions mediated by PTMs, such as lysine methylation.  相似文献   

11.
12.
13.
Biotransformation products of two potential antineoplastic agents, benfluron and dimefluron, are characterized using our integrated approach based on the combination of high-performance liquid chromatography (HPLC) separation of phase I and phase II metabolites followed by photodiode-array UV detection and electrospray ionization tandem mass spectrometry (MS/MS). High mass accuracy measurement allows confirmation of an elemental composition and metabolic reactions according to exact mass defects. The combination of different HPLC/MS/MS scans, such as reconstructed ion current chromatograms, constant neutral loss chromatograms or exact mass filtration, helps the unambiguous detection of low abundance metabolites. The arene oxidation, N-oxidation, N-demethylation, O-demethylation, carbonyl reduction, glucuronidation and sulfation are typical mechanisms of the metabolite formation. The interpretation of their tandem mass spectra enables the distinction of demethylation position (N- vs. O-) as well as to differentiate N-oxidation from arene oxidation for both phase I and phase II metabolites. Two metabolic pathways are rather unusual for rat samples, i.e., glucosylation and double glucuronidation. The formation of metabolites that lead to a significant change in the chromophoric system of studied compounds, such as the reduction of carbonyl group in 7H-benzo[c]fluorene-7-one chromophore, is reflected in their UV spectra, which provides valuable complementary information to MS/MS data.  相似文献   

14.
Free radical‐induced oxidation products of polyunsaturated fatty acids esterified to phospholipids have been implicated in a number of human diseases including atherosclerosis and neurodegenerative diseases. Some of these phospholipid oxidation products have potent biological activities and likely contribute to human pathophysiological conditions. Oxidation products have also been used as markers of oxidative stress in vivo. Identification and quantification of phospholipid oxidation products are often performed by analyzing the oxidized free fatty acid moieties after hydrolysis from the phospholipids head groups by gas chromatography–mass spectrometry (GC–MS) or liquid chromatography–mass spectrometry (LC–MS). We now describe the definitive identification of intact oxidized products of glycerophospholipids including glycerophosphatidylcholine (GPC), glycerophosphatidylethanolamine (GPE), and glycerophosphatidylserine (GPS) in vitro and in vivo using iontrap MS. For these analyses, the negative ions of the oxidation products of phospholipids are fragmented to MSn and unequivocal structural characterization is obtained based on collision‐induced dissociation (CID) of the sn‐2 carboxylate ion. This technique overcomes the need to hydrolyze fatty acids from phospholipids in the analysis. The method has been used to identify a number of oxidation products of glycerophospholipids including hydroxyeicosatetraenoates (HETEs) and isoprostanes (IsoPs) esterified to different classes of glycerophospholipids in vitro and in vivo. These studies thus provide a new approach to identify the intact oxidation products of glycerolphospholipids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.

Electrochemically assisted oxidation off-line combined with UPLC/ESI–MS and ion mobility mass spectrometry enabled us to gain insight into the oxidation mechanisms of xanthohumol. Several types of monomeric oxidation products were identified, i.e., monohydroxylated and dehydrogenated derivatives and related quinones. Besides, high contents of dimers were observed. The structures of four main oxidative condensation products of two xanthohumol molecules were proposed based on combination of retention time, exact mass measurement, fragmentation pattern, data from on-line ion mobility mass spectrometric experiments and with the support of independent electrochemical experiments. To the best of our knowledge, this is the first evidence on formation of xanthohumol dimers. The effect of the pH on the generation of oxidation products was further investigated. The monomeric and dimeric oxidation products are favored at pH of 5.5 and 4.5, respectively.

  相似文献   

17.
Emiliania huxleyi is a cosmopolitan coccolithophore that plays an essential role in global carbon and sulfur cycling, and contributes to marine cloud formation and climate regulation. Previously, the proteomic profile of Emiliania huxleyi was investigated using a three-dimensional separation strategy combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current study reuses the MS/MS spectra obtained, for the global discovery of post-translational modifications (PTMs) in this species without specific enrichment methods. Twenty-five different PTM types were examined using Trans-Proteomic Pipeline (Comet and PeptideProphet). Overall, 13,483 PTMs were identified in 7421 proteins. Methylation was the most frequent PTM with more than 2800 modified sites, and lysine was the most frequently modified amino acid with more than 4000 PTMs. The number of proteins identified increased by 22.5% to 18,780 after performing the PTM search. Compared to intact peptides, the intensities of some modified peptides were superior or equivalent. The intensities of some proteins increased dramatically after the PTM search. Gene ontology analysis revealed that protein persulfidation was related to photosynthesis in Emiliania huxleyi. Additionally, various membrane proteins were found to be phosphorylated. Thus, our global PTM discovery platform provides an overview of PTMs in the species and prompts further studies to uncover their biological functions. The combination of a three-dimensional separation method with global PTM search is a promising approach for the identification and discovery of PTMs in other species.  相似文献   

18.
Mass spectrometry, proteomics, and protein chemistry methods are used to characterize the cleavage products of 79 kDa transferrin proteins induced by iron-catalyzed oxidation, including a novel C-terminal polypeptide released upon disulfide reduction. Top-down electrospray ionization tandem mass spectrometry (ESI-MS/MS) of intact multiply-charged transferrin from a variety of species (human, bovine, rabbit, chicken) performed on a quadrupole time-of-flight mass spectrometer yields multiply-charged b(n)-products originating near residues 56-69 from the N-terminal region, in addition to their complementary y(n)-products. Incubation of transferrin with reductants, such as dithiothreitol (DTT) or tris(2-carboxyethyl)-phosphine (TCEP), yields an increase in multiple charging observed by ESI-MS and an increase in molecular weight consistent with disulfide reduction. However, mammalian transferrins release a 6-8 kDa fragment upon disulfide reduction. Protein acetylation and MS/MS sequencing demonstrate that the fragment originates from the C-terminus of the protein, and that it is a separate polypeptide linked via three disulfide bonds to the main transferrin chain. The existence of a separate C-terminal chain is not annotated in protein sequence databases and, to date, has not been reported in the literature. Iron-catalyzed cleavage induces fragments originating from both the N- and C-terminus of transferrin.  相似文献   

19.
Bae N  Lödl M  Pollak A  Lubec G 《Electrophoresis》2012,33(12):1787-1794
Bilin-binding protein (BBP) is a member of the lipocalin superfamily and a pigment protein in Lepidoptera. It is binding to a series of lipidic compounds but its functions remain to be elucidated. Working on wing proteins in Hebomoia glaucippe, we observed this protein on gels and decided to characterize BBP. A gel-based mass spectrometrical method using two-dimensional gel electrophoresis followed by in-gel digestion of protein spots followed by nano-LC-ESI-MS/MS (ion trap, HCT) identification and characterization of proteins was applied. An antibody was generated against the protein and immunoblotting in the butterfly and mouse brain was carried out. Two spots were identified from the butterfly wing as BBP (P09464) with high sequence coverage. Nitrotyrosination (Y163; as aminotyrosine) was observed and nitration was verified using immunoblotting. Additional posttranslational modifications (PTMs) as hypusine, carboxylation, kynurenine, aminoadipic acid, were proposed. The presence of BBP-immunoreactive protein was also observed in mouse brain. The characterization of BBP showed high sequence similarity with mouse apolipoprotein D and the findings suggest a tentative function of BBP comparable to apolipoproteins. The role of the PTMs remains elusive but nitration, in analogy to nitration effects reported in literature, proposes a role for mechanoelastic proteins and protein-protein interactions.  相似文献   

20.
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been used to characterize heterotetrameric corynebacterial sarcosine oxidase. By using a conventional quadrupole mass spectrometer, no spectra for the intact complex could be obtained (i. e., electrospraying protein at neutral pH), but spectra showing the four protein subunits were obtained when electrospraying from acidic solution. Initial low resolution ESI-FTICR mass spectra of the intact heterotetramer revealed a typical narrow charge state distribution in the range 6000 < m/z < 9000, consistent with retention of a compact structure in the gas phase, and gave a mass measurement about 1000 u higher than predicted. Efficient in-trap clean up, based upon low energy collisionally induced dissociation of adducts, allowed significant improvement in mass measurement accuracy. The present results represent the largest heteromultimeric protein complex successfully analyzed using FTICR mass spectrometry, and clearly illustrate the importance of sample clean up methods for large molecule characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号