首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method for on-tissue identification of proteins in spatially discrete regions is described using tryptic digestion followed by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with MS/MS analysis. IMS is first used to reveal the protein and peptide spatial distribution in a tissue section and then a serial section is robotically spotted with small volumes of trypsin solution to carry out in situ protease digestion. After hydrolysis, 2,5-Dihydroxybenzoic acid (DHB) matrix solution is applied to the digested spots, with subsequent analysis by IMS to reveal the spatial distribution of the various tryptic fragments. Sequence determination of the tryptic fragments is performed using on-tissue MALDI MS/MS analysis directly from the individual digest spots. This protocol enables protein identification directly from tissue while preserving the spatial integrity of the tissue sample. The procedure is demonstrated with the identification of several proteins in the coronal sections of a rat brain.  相似文献   

2.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin‐fixed paraffin‐embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross‐links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.  相似文献   

3.
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high‐resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.  相似文献   

4.
Prefabricated surfaces containing α‐cyano‐4‐hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α‐cyano‐4‐hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography‐tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine‐rich C‐kinase substrate (29.8 kDa) and spectrin alpha chain, non‐erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre‐coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Matrix-assisted laser/desorption ionization (MALDI) mass-spectrometric imaging (MSI), also known as MALDI imaging, is a powerful technique for mapping biological molecules such as endogenous proteins and peptides in human skin tissue sections. A few groups have endeavored to apply MALDI-MSI to the field of skin research; however, a comprehensive article dealing with skin tissue sections and the application of various matrices and enzymes is not available. Our aim is to present a multiplex method, based on MALDI-MSI, to obtain the maximum information from skin tissue sections. Various matrices were applied to skin tissue sections: (1) 9-aminoacridine for imaging metabolites in negative ion mode; (2) sinapinic acid to obtain protein distributions; (3) α-cyano-4-hydroxycinnamic acid subsequent to on-tissue enzymatic digestion by trypsin, elastase, and pepsin, respectively, to localize the resulting peptides. Notably, substantial amounts of data were generated from the distributions retrieved for all matrices applied. Several primary metabolites, e.g. ATP, were localized and subsequently identified by on-tissue postsource decay measurements. Furthermore, maps of proteins and peptides derived from on-tissue digests were generated. Identification of peptides was achieved by elution with different solvents, mixing with α-cyano-4-hydroxycinnamic acid, and subsequent tandem mass spectrometry (MS/MS) measurements, thereby avoiding on-tissue MS/MS measurements. Highly abundant peptides were identified, allowing their use as internal calibrants in future MALDI-MSI analyses of human skin tissue sections. Elastin as an endogenous skin protein was identified only by use of elastase, showing the high potential of alternative enzymes. The results show the versatility of MALDI-MSI in the field of skin research. This article containing a methodological perspective depicts the basics for a comprehensive comparison of various skin states.
Figure
Matrix-assisted laser/desorption ionization (MALDI) mass-spectrometric imaging (MSI), also known as MALDI imaging, is a powerful technique for mapping biological molecules in human skin tissue sections. In this body of work, a multiplex method, based on MALDI-MSI, is presented to obtain maximum information from skin tissue sections. Therefore, various matrices were applied to skin tissue sections: (1) 9-aminoacridine (9-AA) for imaging small molecules in negative ion mode; (2) sinapinic acid (SA) to obtain protein distributions; (3) α-cyano-4-hydroxycinnamic acid (α-HCHA) subsequent to on-tissue enzymatic digestion by trypsin, elastase, and pepsin, respectively, to localize the resulting peptides. Of note, identification of metabolites was achieved by post-source decay (PSD) MALDI, and proteins were identified subsequent to enzymatic digestion via the resulting peptides which were eluted from the skin tissue section and afterwards analyzed with use of a tandem time-of-flight (ToF) mass spectrometer. The application of alternative enzymes, such as pepsin and elastase, is highlighted within this article  相似文献   

6.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross‐linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.  相似文献   

9.
Matrix assisted laser desorption ionisation ion mobility separation mass spectrometry imaging (MALDI-IMS-MSI) has been employed to image the distribution of proteins in ex-vivo human skin. Using a “bottom-up” proteomics approach employing “on-tissue” digestion the distribution of abundant skin proteins; collagen, keratin, decorin and serum albumin could be mapped. Images have been recorded at 150 and 30 μm spatial resolution. Multivariate statistical analysis of the data has been employed to associate specific proteins with layers of the skin. The improved specificity given by the use of ion mobility separation in mass spectrometric imaging has been demonstrated by separation of peptide ions from phospholipids.  相似文献   

10.
One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.  相似文献   

11.
Ion mobility spectrometry (IMS) is a widespread separation technique used in various research fields. It can be coupled to liquid chromatography–mass spectrometry (LC–MS/MS) methods providing an additional separation dimension. During IMS, ions are subjected to multiple collisions with buffer gas, which may cause significant ion heating. The present project addresses this phenomenon from the bottom-up proteomics point of view. We performed LC–MS/MS measurements on a cyclic ion mobility mass spectrometer with varied collision energy (CE) settings both with and without IMS. We investigated the CE dependence of identification score, using Byonic search engine, for more than 1000 tryptic peptides from HeLa digest standard. We determined the optimal CE values—giving the highest identification score—for both setups (i.e., with and without IMS). Results show that lower CE is advantageous when IMS separation is applied, by 6.3 V on average. This value belongs to the one-cycle separation configuration, and multiple cycles may supposedly have even larger impact. The effect of IMS is also reflected in the trends of optimal CE values versus m/z functions. The parameters suggested by the manufacturer were found to be almost optimal for the setup without IMS; on the other hand, they are obviously too high with IMS. Practical consideration on setting up a mass spectrometric platform hyphenated to IMS is also presented. Furthermore, the two CID (collision induced dissociation) fragmentation cells of the instrument—located before and after the IMS cell—were also compared, and we found that CE adjustment is needed when the trap cell is used for activation instead of the transfer cell. Data have been deposited in the MassIVE repository (MSV000090944).  相似文献   

12.
The high accuracy, molecular resolution and sensitivity of matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) make it an efficient method for analysing all kinds of biomolecules including nucleic acids, proteins/peptides, carbohydrates and lipids. MALDI‐TOF‐MS based high‐throughput genotyping of genetic heterogeneities possesses the potential of becoming a routine method. MAL‐DI‐TOF‐MS can be used for the identification of proteins and posttranslational modifications. Taken together, MALDI‐TOF‐MS represents a integrated platform technology in bioanalytics and molecular medicine.  相似文献   

13.
Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.  相似文献   

14.
The spatial distribution of proteins in tissue sections can be used to identify potential markers for pathological processes. Tissue sections are often subjected to enzymatic digestion before matrix‐assisted laser desorption/ionization (MALDI) imaging. This study is targeted at improving the on‐tissue identification of tryptic peptides by accurate mass measurements and complementary off‐line liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) analysis. Two adjacent mouse brain sections were analyzed in parallel. The first section was spotted with trypsin and analyzed by MALDI imaging. Direct on‐tissue MS/MS experiments of this section resulted in the identification of 14 peptides (originating from 4 proteins). The second tissue section was homogenized, fractionated by ultracentrifugation and digested with trypsin prior to LC/ESI‐MS/MS analysis. The number of identified peptides was increased to 153 (corresponding to 106 proteins) by matching imaged mass peaks to peptides which were identified in these LC/ESI‐MS/MS experiments. All results (including MALDI imaging data) were based on accurate mass measurements (RMS <2 ppm) and allow a confident identification of tryptic peptides. Measurements based on lower accuracy would have led to ambiguous or misleading results. MS images of identified peptides were generated with a bin width (mass range used for image generation) of Δm/z = 0.01. The application of accurate mass measurements and additional LC/MS measurements increased both the quality and the number of peptide identifications. The advantages of this approach for the analysis of biological tissue sections are demonstrated and discussed in detail. Results indicate that accurate mass measurements are needed for confident identification and specific image generation of tryptic peptides in tissue sections. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Direct tissue analysis using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) provides the means for in situ molecular analysis of a wide variety of biomolecules. This technology—known as imaging mass spectrometry (IMS)—allows the measurement of biomolecules in their native biological environments without the need for target-specific reagents such as antibodies. In this study, we applied the IMS technique to formalin-fixed paraffin-embedded samples to identify a substance(s) responsible for the intestinal obstruction caused by an unidentified foreign body. In advance of IMS analysis, some pretreatments were applied. After the deparaffinization of sections, samples were subjected to enzyme digestion. The sections co-crystallized with matrix were desorbed and ionized by a laser pulse with scanning. A combination of α-amylase digestion and the 2,5-dihydroxybenzoic acid matrix gave the best mass spectrum. With the IMS Convolution software which we developed, we could automatically extract meaningful signals from the IMS datasets. The representative peak values were m/z 1,013, 1,175, 1,337, 1,499, 1,661, 1,823, and 1,985. Thus, it was revealed that the material was polymer with a 162-Da unit size, calculated from the even intervals. In comparison with the mass spectra of the histopathological specimen and authentic materials, the main component coincided with amylopectin rather than amylose. Tandem MS analysis proved that the main components were oligosaccharides. Finally, we confirmed the identification of amylopectin by staining with periodic acid-Schiff and iodine. These results for the first time show the advantages of MALDI-IMS in combination with enzyme digestion for the direct analysis of oligosaccharides as a major component of histopathological samples.  相似文献   

16.
MALDI imaging mass spectrometry (IMS) has become a valuable tool for the investigation of the content and distribution of molecular species in tissue specimens. Numerous methodological improvements have been made to optimize tissue section preparation and matrix deposition protocols, as well as MS data acquisition and processing. In particular for proteomic analyses, washing the tissue sections before matrix deposition has proven useful to improve spectral qualities by increasing ion yields and the number of signals observed. We systematically explore here the effects of several solvent combinations for washing tissue sections. To minimize experimental variability, all of the measurements were performed on serial sections cut from a single mouse liver tissue block. Several other key steps of the process such as matrix deposition and MS data acquisition and processing have also been automated or standardized. To assess efficacy, after each washing procedure the total ion current and number of peaks were counted from the resulting protein profiles. These results were correlated to on-tissue measurements obtained for lipids. Using similar approaches, several selected washing procedures were also tested for their ability to extend the lifetime as well as revive previously cut tissue sections. The effects of these washes on automated matrix deposition and crystallization behavior as well as their ability to preserve tissue histology were also studied. Finally, in a full-scale IMS study, these washing procedures were tested on a human renal cell carcinoma biopsy.  相似文献   

17.
The combination of microscope mode matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with protein identification methodology: the molecular scanner, was explored. The molecular scanner approach provides improvement of sensitivity of detection and identification of high-mass proteins in microscope mode IMS. The methodology was tested on protein distributions obtained after separation by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). High-quality, high-spatial-resolution ion images were recorded on a TRIFT-II ion microscope after gold coating of the MALDI sample preparation on the poly(vinylidenedifluoride) capture membranes. The sensitivity of the combined method is estimated to be 5 pmol. The minimum amount of sample consumed, needed for identification, was estimated to be better than 100 fmol. Software tools were developed to analyze the spectral data and to generate broad mass range and single molecular component microscope mode ion images and single mass-to-charge ratio microprobe mode images.  相似文献   

18.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

19.
In this study, we developed a novel microwave-assisted protein preparation and digestion method for matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry analysis and identification of proteins that involves using conductive carbon tape as a sample platform for sample preparation (reduction and alkylation) and digestion under microwave heating and as a plate for MALDI analysis. This method allows for the enzymatic digestion products of proteins to be directly analyzed by MALDI mass spectrometry and results in a marked reduction in sample loss. Our protocol requires only a small volume (1 μL) of reaction solvent, which increases the frequency of enzyme-to-protein contact, thereby resulting in more efficient digestion of sample than conventional in-solution digestion methods. To test this protocol, we used magnetic iron (II, III) oxide nanoparticles as concentrating probes to enrich phosphopeptides from a mixture of peptides in enzymatically digested protein samples. We found that the one-pot on-tape-based protein preparation and digestion under microwave heating combined with the on-tape-based enrichment method not only dramatically reduced the time required for phosphopeptides analysis but also allowed for the simultaneous identification of phosphoproteins. The advantages of our protocol include ease of use, high digestion efficiency, high specificity, and rapid (15 min) identification of proteins and enrichment of phosphopeptides in a mixture of enzymatically digested protein samples.  相似文献   

20.
The identification of glycosylation sites in proteins is often possible through a combination of proteolytic digestion, separation, mass spectrometry (MS) and tandem MS (MS/MS). Liquid chromatography (LC) in combination with MS/MS has been a reliable method for detecting glycopeptides in digestion mixtures, and for assigning glycosylation sites and glycopeptide sequences. Direct interfacing of LC with MS relies on electrospray ionization, which produces ions with two, three or four charges for most proteolytic peptides and glycopeptides. MS/MS spectra of such glycopeptide ions often lead to ambiguous interpretation if deconvolution to the singly charged level is not used. In contrast, the matrix-assisted laser desorption/ionization (MALDI) technique usually produces singly charged peptide and glycopeptide ions. These ions require an extended m/z range, as provided by the quadrupole-quadrupole time-of-flight (QqTOF) instrument used in these experiments, but the main advantages of studying singly charged ions are the simplicity and consistency of the MS/MS spectra. A first aim of the present study is to develop methods to recognize and use glycopeptide [M+H]+ ions as precursors for MS/MS, and thus for glycopeptide/glycoprotein identification as part of wider proteomics studies. Secondly, this article aims at demonstrating the usefulness of MALDI-MS/MS spectra of N-glycopeptides. Mixtures of diverse types of proteins, obtained commercially, were prepared and subjected to reduction, alkylation and tryptic digestion. Micro-column reversed-phase separation allowed deposition of several fractions on MALDI plates, followed by MS and MS/MS analysis of all peptides. Glycopeptide fractions were identified after MS by their specific m/z spacing patterns (162, 203, 291 u) between glycoforms, and then analyzed by MS/MS. In most cases, MS/MS spectra of [M+H]+ ions of glycopeptides featured peaks useful for determining sugar composition, peptide sequence, and thus probable glycosylation site. Peptide-related product ions could be used in database search procedures and allowed the identification of the glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号