首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The bipolar resistive switching mechanisms of a p-type NiO film and n-type TiO2 film were examined using local probe-based measurements. Scanning probe-based current–voltage (IV) sweeps and surface potential/current maps obtained after the application of dc bias suggested that resistive switching is caused mainly by the surface redox reactions involving oxygen ions at the tip/oxide interface. This explanation can be applied generally to both p-type and n-type conducting resistive switching films. The contribution of oxygen migration to resistive switching was also observed indirectly, but only in the cases where the tip was in (quasi-) Ohmic contact with the oxide.  相似文献   

2.
We report on measurements of current–voltage (IV) characteristics for YNi2B2C single crystals with weak pinning in various fields at 7.6 K. We find nonmonotonic, N-shaped IV curves in a certain field region deep in the vortex solid phase. This behavior is anomalous, since there exists an intermediate I region where flow voltage V shows a decrease with increasing I (a driving force). While the exact nature remains unknown, this phenomenon suggests vortex motion (driving I) induced pinning.  相似文献   

3.
A novel Ag–Al alloy electrode has been prepared on the La0.67Ca0.33MnO3 (LCMO) film grown by pulsed laser deposition, with the aim to improve its resistance-switching properties. Nonlinear, asymmetric, and hysteretic current–voltage characteristics and reversible polarity-dependent switching properties are achieved in the Ag–Al alloy/LCMO/Pt structure. Detailed current–voltage characteristics analysis indicates that the resistance-switching behavior can be well explained by the mechanism of trap-controlled space charge limited conduction at the Ag–Al alloy/LCMO interface. The LCMO film with an Ag–Al alloy top electrode exhibits much better resistance-switching properties than that with an Al top electrode, including the shorter switching time and more stable switching process, demonstrating that the Ag–Al alloy electrode is a promising electrode materials of manganite films for resistance random access memory applications.  相似文献   

4.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

5.
Organic photovoltaic cells have important advantages, such as low cost and mechanical flexibility. The conducting polymer poly(3,4 ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely used as an interfacial layer or a polymer electrode in polymer electronic devices, such as photovoltaic devices and light-emitting diodes. In this report, we discuss the direct current (DC) conductivity of PEDOT:PSS films containing various weight ratios of sorbitol dopant. The work function is shown to steadily decrease with increasing dopant content. With different dopant contents, illuminated current–voltage photovoltaic characteristics were observed. Ultraviolet photoelectron spectroscopy (UPS) analysis revealed that the work function of the PEDOT:PSS was affected by its sorbitol content. The morphologies of the doped PEDOT:PSS films were characterized by atomic force microscopy (AFM). For the device fabrication, we made organic photovoltaic cells by a spin-coating process and Al deposition by thermal evaporation. The sorbitol dopant is able to improve the efficiency of the device.  相似文献   

6.
郝志红  胡子阳  张建军  郝秋艳  赵颖 《物理学报》2011,60(11):117106-117106
研究了掺杂后poly(3,4-ethylene dioxythiophene):poly(styrenesulphonic acid)(PEDOT ∶PSS)电导率的变化以及掺杂PEDOT ∶PSS薄膜对聚合物太阳能电池器件性能的影响. 实验发现,向PEDOT ∶PSS中掺入极性溶剂二甲基亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率最大值达到1.25 S/cm,比未掺杂时提高了3个数量级. 将掺杂的PEDOT ∶PSS薄膜作为缓冲层应用于聚合物电池 (ITO/PEDOT ∶PSS/P3HT ∶PCBM/LiF/Al) 中,发现高电导率的PEDOT ∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性能. 最好的聚合物太阳能电池在100 mW/cm2的光照下,开路电压(Voc)为0.63 V,短路电流密度(Jsc)为11.09 mA·cm-2,填充因子(FF)为63.7%,能量转换效率(η)达到4.45%. 关键词: PEDOT ∶PSS 电导率 聚合物太阳能电池 能量转换效率  相似文献   

7.
The authors report on the fabrication and electronic transport property of LaAlO3/Nb-doped SrTiO3 heterostructure. The current–voltage curves of this heterostructure show hysteresis and a remarkable resistance switching behavior, which increase dramatically with decreasing temperature. Multiresistance states were realized by voltage pulses with different amplitudes and polarities and the ratio of the electrical pulse induced resistance change is larger than 104. More interestingly, the relaxation of junction current after switching follows the Curie–von Schweidler law Jt n with an exponential increase of n with temperature. The results were discussed in terms of the trap-controlled space charge limited conduction process via defects near the interface of the heterostructure.  相似文献   

8.
Motivated by the successful use of strontium titanate with different doping metals for memory cells on the basis of resistive switching and the recent findings on the major importance of oxygen vacancy redistribution in this compound, the present work shows the possibility of a non-volatile resistance change memory based on vacancy-doped SrTiO3. The formation of corresponding metal/SrTiO3−δ junctions (δ>0) in an electric field will be discussed as well as the switching between ohmic and Schottky-type contact behavior. A notable hysteresis in the current–voltage characteristics is used to carry out Write, Read, and Erase operations exemplifying the memory cell properties of such junctions. But whereas the electric field-induced formation of Schottky-type junctions is explainable by oxygen vacancy redistribution, the resistive switching needs to be discussed in terms of vacancies serving as electron trap states at the metal/oxide interface.  相似文献   

9.
The field effect devices prepared completely from conducting polymers, especially poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS), were studied. Normally in a conductive “on” state, the transistor-like device has a transition to a substantially less conductive “off” state at an applied positive gate voltage, typically ∼15–25 V. The current ratio Ioff/Ion can exceed 10−4 at room temperature. We have found that the field effect is strongly temperature dependent and is substantially reduced upon decreasing the temperature by only a 10 °C. This loss of current reduction upon application of a gate voltage is not due to the temperature dependence of the electrical conductivity of polymers of which the devices are made. The temperature dependence of the dc conductivity of the PEDOT/PSS follows the variable range hopping law both before and after application of the gate voltage, though with an increased activation energy, T0. We suggest that the conducting polymer is near the metal–insulator transition and that the field effect in the device is related to the electric field modulating this transition in the region underneath the gate electrode. The transition is controlled and leveraged by ion motion. The time dynamics of the current with the gate modulation strongly supports our conjecture. We demonstrate the generality of the phenomena by presenting similar results for devices fabricated from the conducting polypyrrole doped with Cl.  相似文献   

10.
P. K. Shukla  S. L. Agrawal 《Ionics》2000,6(3-4):312-320
The present paper deals with ion transport studies on a new proton conducting composite polymer electrolyte — (PVAx:NH4SCN)y:PVAc system. Complexation and morphology of the composite electrolyte films are discussed on the basis of X-ray diffraction and differential scanning calorimetry data. Coulometry and transient ionic current measurements revealed charge transport through protons. The maximum ion conductivity was found to be 7.4·10−4 S·cm−1 for the composition: x=0.15, y=0.12. The observed conductivity behaviour is correlated to the morphology of the films. The temperature dependence of the electrical conductivity exhibits Arrhenius characteristics in two different temperature ranges separated by a plateau region related to morphological changes occurring in the electrolyte.  相似文献   

11.

The resistive switching effects in composite films containing polyfunctional polymers, such as derivatives of carbazole (PVK), fluorene (PFD), and polyvinyl chloride (PVC), and also graphene particles (Gr) and graphene oxide (GO), the concentration of which in the polymer matrices varied in the range from 1 to 3 wt % corresponding to the percolation threshold in such systems, have been studied. The analysis of the elemental composition of the investigated composites by means of X-ray photoelectron spectroscopy have shown that the oxidation degree of Gr in GO is about 9 to 10%. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK (PFD; PVC): Gr (GO)/ITO/PET structures, where ITO is indium tin oxide, and PET is poly(ethylene terephthalate), with the switching time, t, in the range from 1 to 30 μs. The observed effects are attributed to the influence of redox reactions taking place on the Gr and GO particles enclosed in the polymer matrix, and the additional influence of thermomechanical properties of the polymer constituent of the matrix.

  相似文献   

12.
The characteristics of resistive switching of TiN/HfO2/Ti/HfO2/Pt/Ti stacks on SiO2/Si substrates were investigated and compared to TiN/HfO2/Pt/Ti stacks in order to study Ti interlayer effects on resistive switching. The Ti interlayers were deposited in situ during the reactive sputtering of HfO2 films. The current–voltage measurements showed that the Ti interlayers enhanced the memory window but reduced the endurance of SET/RESET operations. The energy filtered images by TEM showed asymmetric oxygen accumulation at the Ti/HfO x interfaces. Subsequent heat treatment improved the endurance of SET/RESET operation of TiN/HfO2/Ti/HfO2/Pt/Ti stacks.  相似文献   

13.
Films of the composition Ge40S60 have been studied in the temperature range of 313–423 K for electrical conductivity, and 293–373 K for thermal conductivity. The dc conductivity results indicate a single value activation energy of 0.863 eV for the conductivity in the applied temperature range. The thermal conductivity coefficient increases linearly with temperature at a thickness of d=0.311 cm. It was found that the investigated samples show a memory effect. The threshold switching voltage was found to increase linearly with film thickness. Moreover, the threshold voltage decreases exponentially with temperature. The data are analysed using a thermal model for the switching process.  相似文献   

14.
We report the ac conductivity and relaxation behavior analysis for a heterogeneous polymer–clay nanocomposite (PNC) having composition (polyacrylonitrile)8LiCF3SO3 + x wt.% dodecylamine modified montmorillonite. Charge transport behavior in an ionically conducting PNC has been analyzed systematically and correlated with the macroscopic parameters like polymer glass transition temperature and available free mobile charge carriers. Intercalation of cation coordinated polymer into the nanometric clay channels has been confirmed by high-resolution transmission electron microscopy. The electrical properties of the intercalated PNC films have been studied using complex impedance/admittance spectroscopy. Excellent correlation of relaxation behavior with polymer glass transition temperature (T g) confirmed the objectives of the work. An analysis of dielectric relaxation indicates that PNC films are lossy when compared with polymer–salt film. This result is a direct outcome of faster ion dynamics leading to strong electrode polarization effect due to the accumulation of charge carriers at the interface.  相似文献   

15.
Thin films of ZnSe and PEO–chitosan blend polymer doped with NH4I and iodine crystals were prepared to form the two sides of a semiconductor electrolyte junction. ZnSe was electrodeposited on indium tin oxide (ITO) conducting glass. The polymer is a blend of 50 wt% chitosan and 50 wt% polyethylene oxide. The polymer blend was complexed with ammonium iodide (NH4I), and some iodine crystals were added to the polymer–NH4I solution to provide the I/I3−redox couple. The room temperature ionic conductivity of the polymer electrolyte is 4.32 × 10−6 S/cm. The polymer film was sandwiched between the ZnSe semiconductor and an ITO glass to form a ZnSe/polymer electrolyte/ITO photovoltaic cell. The open circuit voltage (V oc) of the fabricated cells ranges between 200 to 400 mV and the short circuit current between 7 to 10 μA.  相似文献   

16.
With the concept of fractal surfaces, the influence of the relief of the interface (roughness) and the heterogeneity of the potential barrier on the behavior of the current–voltage and capacity–voltage characteristics of the metal–semiconductor electric contacts with the Schottky barrier has been studied. The necessary and satisfactory conditions for the accurate relative measurements of the surface relief have been found with the mathematical apparatus of the Hausdorff–Besikovitsch fractional dimensionality 2 D f3. It is shown that due to the fractal geometry the relative change of the real area of the interface of the metal–semiconductor contacts with the Schottky barrier is proportional to the ratio of their linear dimensions in the 4-Df power. This is considerably slower than the change of the dimensions of the topological areas of their contact windows. The method to determine the fractal dimensionality of the real interface of the metal–semiconductor electric contacts with the Schottky barrier from the current–voltage and capacity–voltage characteristics has been developed.  相似文献   

17.
Mechanisms controlling the efficiency of polymer solar cells   总被引:1,自引:0,他引:1  
To improve the efficiency of polymer solar cells, it is vital to understand which mechanisms control the current–voltage characteristics of a given device. Temperature and light intensity dependence of the main solar cell parameters are very informative for analyzing losses. We report on the current–voltage characteristics and the external photogeneration quantum yield of ITO/PEDOT:PSS/OC1C10-PPV:PCBM/Al as well as of ITO/PEDOT:PSS/P3HT:PCBM/Al devices investigated in the broad temperature range 120–325 K under variable illumination, between 0.02 and 100 mW/cm2. We discuss the recombination on traps and the low mobility of charge carriers caused by poor morphology of active layers as possible mechanisms limiting the efficiency of these devices. PACS 73.50.P; 73.61.P; 72.80.R  相似文献   

18.
The effect of doping CdIn2S4 single crystals by copper (3 mol %) on their X-ray dosimetric characteristics is investigated. It is found that the characteristic X-ray conductivity of CdIn2S4〈Cu〉 single crystals increases 3–16 times compared with undoped CdIn2S4 at effective radiation hardness V a = 25−50 keV and dose rate E = 0.75−78.05 R/min. Moreover, the persistence of the crystal characteristics completely disappears and the supply voltage of a CdIn2S4〈Cu〉 X-ray detector decreases fivefold. The dependence of the steady X-ray-induced current in CdIn2S4〈Cu〉 on the X-ray dose is described as ΔI E, 0E α, where 0.6 ≤ α ≤ 1.8.  相似文献   

19.
A new thin film sodium ion conducting plasticized polymer electrolyte based on poly(vinyl pyrrolidone) (PVP) complexed with NaClO3 salt systems was prepared by the solution-cast method. The interaction of NaClO3 salt with PVP was confirmed by Infrared (IR) study. Charge transport of these polymer electrolytes is due to ions, which was confirmed by Wagner’s polarization method. From the conductivity measurements, the highest conductivity value 6.71×10−5 S/cm was observed for the composition PVP:PEG:NaClO3(30:60:10) at room temperature 35 °C. The redox behaviour and good reversibility of the plasiticized electrolytes are confirmed by electrochemical techniques. Electrochemical cell studies of these polymer electrolytes were analyzed from their discharge characteristics. The open-circuit voltage (OCV) and short-circuit current (SCC) were found to in the range of 2.52 V to 2.36 V and 760 μA to 1040 μA, respectively.  相似文献   

20.
Thin-film heterojunctions Nd2 − x Ce x CuO4 − y /Ag were obtained. The bipolar effect of resistive switching in these heterostructures was detected and investigated. X-ray diffraction data indicate the presence of a second phase in thin films; along with the basic phase Nd2 − x Ce x CuO4 − y , it affects the behavior of the interface of investigated heterojunctions and leads to an alteration of the type of conductivity. The threshold frequency of alternating voltage at which the resistive switching effect is observed in heterojunctions was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号