首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barium dioxodiaquaperoxyoxalatouranate was obtained by reaction of uranyl nitrate with oxalic acid and then hydrogen peroxide in the presence of barium ion. The complex was subjected to chemical analysis. The thermal decomposition behaviour of the complex was studied using TG, DTG and DTA techniques. The solid complex salt and the intermediate product of its thermal decomposition were characterized using IR absorption and X-ray diffraction spectra. Based on data from these physico-chemical investigations the structural formula of the complex was proposed as Ba[UO2(O2)(C2O4)(H2O)2]⋅H2O. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The thermal decomposition behavior of oxovanadium(IV)hydroxamate complexes of composition [VO(acac)(C6H5C(O)NHO)] (I), [VO(C6H5C(O)NHO)2] (II), [VO(acac)(4-ClC6H4C(O)NHO)] (III), [VO(4-ClC6H4C(O)NHO)2] (IV) (where acac = (CH3COCHCOCH3 ) synthesized from the reactions of VO(acac)2 with equi- and bimolar amounts of potassium benzohydroxamate and potassium 4-chlorobenzohydroxamate in THF + MeOH solvent medium has been studied by TG and DTA techniques. TG curves indicated that complexes I, II, and IV undergo decomposition in single step to yield VO2 as the final residue, while complex III decomposes in two steps to yield VO(acac) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stability for the complexes has been inferred as IV > I > III > II.  相似文献   

3.
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 10.9 and 11.1 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations show dehydration with a total loss of 7 moles of water proving the formula of hexacyanoferrate(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5·7H2O and 9.0 moles for the hexacyanoferrate(III) intercalated hydrotalcite with the formula of Mg6Al2(OH)16[Fe(CN)6]0.66·9H2O. CRTA technology indicates the partial collapse of the dehydrated mineral. Dehydroxylation combined with CN unit loss occurs in two isothermal stages at 377 and 390°C for the hexacyanoferrate(III) and in a single isothermal process at 374°C for the hexacyanoferrate(III) hydrotalcite.  相似文献   

4.
Thermogravimetry (TG), differential thermal analysis (DTA) and other analytical methods have been applied to the investigation of the thermal behaviour and structure of the complexes Mg(pc)(na)3⋅3H2O (I), Mg(pc)(py)2⋅2H2O (II),Mg(pc)(pic)2⋅2H2O (III) and Mg(pc)(caf)2⋅4H2O (IV), where pc=2,6- pyridinedicarboxylate, na=nicotinamide,py=pyridine, pic=γ-picoline and caf=caffeine. The thermal decomposition of these compounds is multi-stage processes. The chemical composition of the complexes, the solid intermediates and the resultant products of thermolysis have been identified by means of elemental analysis and complexometric titration. Schemes of destruction of these complexes are suggested. Heating of these compounds first resulted in a release of water molecules. In complexes I, II and IV the loss of the molecular ligands (na, py and caf) occur (on the TG curves) in one step (-2na, -2py and -2caf) and in complex III in two steps (-pic, -pic). The final product of the thermal decomposition was MgO. The thermalstability of the complexes can be ordered in the sequence: IV<I<III<II. Nicotinamide, pyridine, γ-picoline and caffeine were co-ordinated to Mg(II) through the N atom of the respective heterocyclic ring. IR data suggested a unidentate co-ordination of carboxylates to Mg(II) in complexes I–IV. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The Stoichiometry of thermal decomposition was studied for the following compounds: Ni(NCS)2(pip)4 (I), (pip=piperidine), Ni(NCS)2(pip)2py·H2O (II), (py=piridine), Ni(NCS)2(4-Mepip)3 (III), Ni(NCS)2(3-Mepip)3 (IV) and Ni(NCS)2(3.5-Me2pip)3 (V). In complexes I, II, III and IV the loss of the volatile ligands (on the TG curve to 300 °C) occurs in three steps and in complex V in two steps. The loss of the last molecules of volatile ligands is accompanied by the decomposition of NCS groups. Spectral data and magnetic moment values for the initial complexes I and II (together with the defined intermediates) indicated pseudooctahedral configuration while pentacoordination for complexes III, IV and V. Structural changes of the complexes studied in thermal decomposition reactions are discussed.  相似文献   

6.
Summary Tris(dicarboxylate) complexes of iron(III) with oxalate, maleate, malonate and phthalate viz. K3[Fe(C2O4)3]×3H2O (1), K3[Fe(OOCCH2COO)3]×3H2O (2), K3[Fe(OOCCH=CHCOO)3]×3H2O (3), K3[Fe(OOC-1,2-(C6H4)-COO)3]×3H2O (4) have been synthesized and characterized using a combination of physicochemical techniques. The thermal decomposition behaviour of these complexes have been investigated under dynamic air atmosphere upto 800 K. All these complexes undergo a three-step dehydration/decomposition process for which the kinetic parameters have been calculated using Freeman-Carrol model as well as using different mechanistic models of the solid-state reactions. The trisoxalato and trismalonato ferrate(III) complexes undergo rapid dehydration at lower temperature below 470 K. At moderately higher temperatures (i.e. >600 and 500 K, respectively) they formed bis chelate iron(III) complexes. The trismalonato and trismaleato complexes dehydrate with almost equal ease but the latter is much less stable to decomposition and yields FeCO3 below 760 K. The cis-dicarboxylate complexes particularly with maleate(2-) and phthalate(2-) ligands are highly prone to the loss of cyclic anhydrides at moderately raised temperatures. The thermal decomposition of the tris(dicarboxylato)iron(II) to iron oxide was not observed in the investigated temperature range up to 800 K. The dehydration processes generally followed the first or second order mechanism while the third decomposition steps followed either three-dimensional diffusion or contracting volume mechanism.  相似文献   

7.
Spectroscopic (IR), thermoanalytical (TG/DTG, DTA) and biological methods were applied to investigate physicochemical and biological properties of seven zinc(II) complex compounds of the following formula Zn(HCOO)2·2H2O (I), Zn(HCOO)2·tph (II), Zn(CH3COO)2·2H2O (III), Zn(CH3COO)2·tph (IV), Zn(CH3COO)2·2phen (V), Zn(CH3CH2COO)2·2H2O (VI), Zn(CH3CH2CH2COO)2·2H2O (VII), where tph=theophylline, phen=phenazone. The formation of various intermediates during thermal decomposition suggests the dependence on the length of aliphatic carboxylic chain and type of N-donor ligand (tph, phen). The final product of the thermal decomposition was ZnO. The antimicrobial activity of these complexes were tested against G+ and G bacteria. Strong inhibitive effect was observed towards E. coli, salmonellae and Staph. aureus.  相似文献   

8.
Thermogravimetry (TG), differential thermal analysis (DTA) and other analytical methods have been applied to the investigation of the thermal behaviour and structure of the compounds Mg(Ac)2 × 2H2 O(I), Mg(ClAc)2 ×2H2 O(II) and Mg(Cl2 Ac)2 ×H2 O(III) (Ac =CH3 COO , ClAc =ClCH2COO , Cl 2 Ac =Cl2 CHCOO ). The solid phased intermediate and resultant products of thermolysis had been identified. The possible scheme of destruction of the complexes is suggested. The halogenacetato magnesium complexes (II–III) are thermally more stable than the acetatomagnesium complex I. The final products of the decomposition of compounds were MgO. Infrared (IR) data suggest to a unidentate coordination of carboxylate ions to magnesium ions in complexes I–III. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Thermal decomposition of Pu(C2O4)2·6H2O, Pu2(C2O4)3·10H2O and Np(C2O4)2 ·6H2O has been studied by using combination of gas chromatography, infrared spectroscopy, spectrophotometry and complex thermal analysis. We also investigated the decomposition of Pu oxalate under its -radiation. The reduction of Pu(IV) to Pu(III) has been confirmed. We found Np(V), which is formed from Np(IV), on the basis of infrared and absorption spectra of the intermediate compounds.  相似文献   

10.
Summary Three Cr(III) species (dichlorotetraaquachromium (III), [CrCl2(H2O)4]+; monochloropentaaquachromium(III), [CrCl(H2O)5]2+; and hexaaquachromium(III), [Cr(H2O)6]3+) have been separated and determined by capillary electrophoresis. The first two complexes could be detected in direct mode in phosphate buffer, but because the absorption of complex [Cr(H2O)6]3+ is poor in the UV range, indirect UV detection had to be used. For indirect detection 5 mM imidazole was added to the buffer solution. The formation and decomposition of the different Cr(III) complexes were monitored in time after the preparation of solutions of CrCl3.6H2O. The slowest process was the decomposition of [CrCl(H2O)5]2+; 300 h after preparation of a solution of CrCl3.6H2O of pH 1 the solution contained only [Cr(H2O)6]3+. The effects of pH and the content of some matrix ions on the rates of conversion of the complexes were studied. The kinetic characteristics of this complex system could be investigated adequately by means of capillary electrophoresis. Presented at Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

11.
The thermal properties of the Cu(II), Ni(II) and Co(II) complexes of iminodiacetic acid (H2IMDA) were determined using TG, DTG and DSC techniques. The complexes, of general formula, MIMDA-2H2O evolved water of hydration from 50 to 150°C which was followed by the decomposition of the anhydrous complex in the 250 to 400°C temperature range. The thermal stability, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II). The thermal stability is discussed in terms of IR spectra, ΔH, and ΔS, as well as thermal data.  相似文献   

12.
Solid complexes of five derivatives of thio-Schiff bases with La(III) and Ce(III) ions were prepared and characterized by elemental and thermogravimetric analyses. The suggested general formula of the solid complexes is [ML2(H2O)X]·2H2O, whereM=trivalent lanthanide ion,L=Schiff base andX=Cl? or ClO 4 ? . Information about the water of hydration, the coordinated water molecules, the coordination chemistry and the thermal stability of these complexes was obtained and is discussed. Additionally, a general scheme of thermal decomposition of the lanthanide-Schiff base complexes is proposed.  相似文献   

13.
Summary Prediction of the thermal decomposition pathway of the metal complexes is very important from the theoretical and experimental point of view to determine the properties and structural differences of complexes. In the prediction of the decomposition pathways of complexes, besides the thermal analysis techniques, some ancillary techniques e.g. mass spectroscopy is also used in recent years. In the light of the molecular structures and fragmentation components, it is believed that the thermal decomposition pathway of most molecules is similar to the ionisation mechanism occurring in the mass spectrometer ionisation process. In this study, the thermal decomposition pathway of [Ni(dmen)2(H2O)2](acs)2 complex have been predicted by the help of thermal analysis data (TG, DTG and DTA) and mass spectroscopic fragmentation pattern. The complex was decomposed in four stages: a) dehydration between 84-132°C, b) loss of N,N'-dimethylethylenediamine (dmen) ligand, c) decomposition of remained dmen and acesulfamato (acs) by releasing SO2, d) burning of the organic residue to resulting in NiO. The volatile products observed in the thermal decomposition process were also observed in the mass spectrometer ionisation process except molecular peak and it was concluded that the ionisation and thermal decomposition pathway of the complex resembles each other.  相似文献   

14.
Indium (III) is precipitated with oxalic acid in the presence of potassium nitrate maintaining an overall concentration of 0·125 M in HNO3. Chemical analysis of the complex salt obtained indicates the formula, K[In(C2O4)2]·3H2O. Thermal decomposition studies show that the compound decomposes first to the anhydrous potassium indium oxalate and then to the final mixture of the oxides through formation of potassium carbonate and indium (III) oxide as intermediates. Isothermal study, X-ray diffraction pattern and IR spectral data support the proposed thermal decomposition mechanism.  相似文献   

15.
Oxalates of La(III), Ce(III), Pr(III), Nd(III) and Sm(III) with the hydrazinium cation with the general formulae (N2H5)4Ln2(C2O4)57H2O (Ln=La3+, Ce3+, Pr3+) and N2H5Ln(C2O4)2·3.5H2O (Ln=Nd3+, Sm3+) were synthesized. The thermal decompositions of these compounds take place in three stages: thermal dehydration at 65–100°C, exothermic decomposition of the N2H4 at 230–260°C, and oxidation of the oxalate ion.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
Potassium bisoxalato diaquothallate(III) dihydrate is obtained by precipitating thallium(III) with oxalic acid from slightly acidic (HNO3 or H2SO4) solutions in the presence of potassium ions. The thermal decomposition behaviour of the complex is studied using the techniques of TG, DTA and DTG. The solid complex salt and the intermediate products of its thermal decomposition are characterised using IR absorption spectra, microscopic observations, electrical conductivity measurements and X-ray diffraction data.  相似文献   

17.
Summary A new dinitrogen complex of formula Na2[Ru(PDTA)(N2)] · 2H2O has been synthesized in aqueous solution from [Ru(HPDTA) (H2O)] · H2O and NaN3. The complex has been characterized by chemical analysis, infrared and electronic spectra, and magnetic measurements. The thermal decomposition process has been studied using DTA and TG techniques. The evolution of gases was followed by gas chromatography.  相似文献   

18.
Thermal decomposition of sodium tris(maleato)ferrate(III) hexahydrate, Na3[Fe(C4H2O4)3]·6H2O and sodium tris(fumarato)ferrate(III) heptahydrate, Na3[Fe(C4H2O4)3]·7H2O has been studied upto 973 K in static air atmosphere employing TG, DTG, DSC, XRD, Mössbauer and infrared spectroscopic techniques. Dehydration of the maleate complex is complete at 455 K and the anhydrous complex immediately undergoes decomposition till α-Fe2O3 and sodium carbonate are formed at 618 K. In the final stage of remixing of cations, a solid state reaction between α-Fe2O3 and sodium carbonate leads to the formation of α-NaFeO2 at a temperature (773 K) much lower than for ceramic method. Almost similar mode of decomposition has been observed for the fumarate complex. A comparison of the thermal stability shows that the fumarate precursor decomposes at a higher temperature than the maleate complex due to the trans geometry of the former.  相似文献   

19.
《Polyhedron》2002,21(12-13):1299-1304
The crystal structure of a trinuclear iron monoiodoacetate complex was determined. Although it has been incorrectly characterized as [Fe3O(O2CCH2I)6(H2O)3], the correct chemical formula turned out to be [Fe(III)2Fe(II)O(O2CCH2I)6(H2O)3]-[Fe(III)3O(O2CCH2I)6(H2O)3]I (1). The two kinds of Fe3O molecules (Fe(III)2Fe(II)O and Fe(III)3O) are crystallographically indistinguishable. All the Fe atoms are crystallographically equivalent because of a crystallographic threefold symmetry. Heat capacities of 1 seem to exhibit no thermal anomaly in the temperature range 5.5–309 K, although the valence detrapping phenomenon has been observed in this temperature range. This fact indicates that the valence-detrapping phenomenon in 1 occurs without any phase transition, leading 1 to a glassy state, probably because the crystal of 1 is just like a solid solution of distorted mixed-valence Fe(III)2Fe(II)O molecules and permanently undistorted Fe(III)3O molecules which may act as an inhibitor for a cooperative valence-trapping.  相似文献   

20.
A new dinitrogen complex of formula Na2[Fe(PDTA) (N2] (H2O)2 has been synthesized in aqueous solution from [Fe(H-PDTA) (H2O)], 3/2H2O and NaN3. The complex has been characterized by chemical analysis, IR and electronic spectra, and magnetic measurements. The thermal decomposition process has been studied by using DTA and TG techniques. The evolution of gases was followed by Gas Chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号