首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order M?ller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.  相似文献   

2.
A computational study on the intermolecular potential energy of 44 different orientations of F2 dimers is presented. Basis set superposition error (BSSE) corrected potential energy surface is calculated using the supermolecular approach at CCSD(T) and QCISD(T) levels of theory. The interaction energies obtained using the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets are extrapolated to the complete basis set limit using the latest extrapolation scheme. The basis set effect is checked and it is found that the extrapolated intermolecular energies provide the best compromise between the accuracy and computational cost. Among 1320 energy points of F2–F2 system covering more relative orientations, the most stable structure of the dimers was obtained with a well depth of ?146.62 cm?1 that related to cross configuration, and the most unstable structure is related to linear orientation with a well depth of ?52.63 cm?1. The calculated second virial coefficients are in good agreement with experimental data. The latest extrapolation scheme of the complete basis set limit at the CCSD(T) level of theory is used to determine the intermolecular potential energy surface of the F2 dimer. Comparing the results obtained by the latest scheme with those by older schemes show that the new approach provides the best compromise between accuracy and computational cost.  相似文献   

3.
The authors construct a rigid-body (five-dimensional) potential energy surface for the water-nitrogen complex using the systematic intermolecular potential extrapolation routine. The intermolecular potential is then extrapolated to the limit of a complete basis set. An analytic fit of this surface is obtained, and, using this, the global minimum energy is found. The minimum is located in an arrangement in which N2 is near the H atom of H2O, almost collinear with the OH bond. The best estimate of the binding energy is 441 cm-1 (1 cm-1 approximately 1.986 43x10(-23) J). The extrapolated potential is then used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). These calculated second virial coefficients are generally consistent with experimental data, but for the most part the former have smaller uncertainties.  相似文献   

4.
Full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for H(5)O(2) (+). Tens of thousands of coupled-cluster [CCSD(T)] and second-order Moller-Plesset (MP2) calculations of electronic energies, using aug-cc-pVTZ basis, were done. The energies were fit very precisely in terms of all the internuclear distances, using standard least-square procedures, however, with a fitting basis that satisfies permutational symmetry with respect to like atoms. The H(5)O(2) (+) PES is a fit to 48 189 CCSD(T) energies, containing 7962 polynomial coefficients. The PES has a rms fitting error of 34.9 cm(-1) for the entire data set up to 110 000 cm(-1). This surface can describe various internal floppy motions, including the H atom exchanges, monomer inversions, and monomer torsions. First- and higher-order saddle points have been located on the surface and compared with available previous theoretical work. In addition, the PES dissociates correctly (and symmetrically) to H(2)O+H(3)O(+), with D(e)=11 923.8 cm(-1). Geometrical and vibrational properties of the monomer fragments are presented. The corresponding global DMS fit (MP2 based) involves 3844 polynomial coefficients and also dissociates correctly.  相似文献   

5.
An ab initio nonadditive three-body potential for argon has been developed using quantum-chemical calculations at the CCSD(T) and CCSDT levels of theory. Applying this potential together with a recent ab initio pair potential from the literature, the third and fourth to seventh pressure virial coefficients of argon were computed by standard numerical integration and the Mayer-sampling Monte Carlo method, respectively, for a wide temperature range. All calculated virial coefficients were fitted separately as polynomials in temperature. The results for the third virial coefficient agree with values evaluated directly from experimental data and with those computed for other nonadditive three-body potentials. We also redetermined the second and third virial coefficients from the best experimental pρT data utilizing the computed higher virial coefficients as constraints. Thus, a significantly closer agreement of the calculated third virial coefficients with the experimental data was achieved. For different orders of the virial expansion, pρT data have been calculated and compared with results from high quality measurements in the gaseous and supercritical region. The theoretically predicted pressures are within the very small experimental errors of ±0.02% for p ≤ 12 MPa in the supercritical region near room temperature, whereas for subcritical temperatures the deviations increase up to +0.3%. The computed pressure at the critical density and temperature is about 1.3% below the experimental value. At pressures between 200 MPa and 1000 MPa and at 373 K, the calculated values deviate by 1% to 9% from the experimental results.  相似文献   

6.
We report new ab initio results for the interaction-induced dipole moments Δμ of hydrogen molecules colliding with helium atoms. These results are needed in order to calculate collision-induced absorption spectra at high temperatures; applications include modeling the radiative profiles of very cool white dwarf stars, with temperatures from 3500 K to 9000 K. We have evaluated the dipoles based on finite-field calculations, with coupled cluster methods in MOLPRO 2006 and aug-cc-pV5Z (spdfg) basis sets for both the H and He centers. We have obtained values of Δμ for eight H(2) bond lengths ranging from 0.942 a.u. to 2.801 a.u., for 15 intermolecular separations R ranging from 2.0 a.u. to 10.0 a.u., and for 19 different relative orientations. In general, our values agree well with earlier ab initio results, for the geometrical configurations that are treated in common, but we have determined more points on the collision-induced dipole surface by an order of magnitude. These results make it possible to calculate transition probabilities for molecules in excited vibrational states, overtones, and rotational transitions with ΔJ > 4. We have cast our results in the symmetry-adapted form needed for absorption line shape calculations, by expressing Δμ as a series in the spherical harmonics of the orientation angles of the intermolecular vector and of a unit vector along the H(2) bond axis. The expansion coefficients depend on the H(2) bond length and the intermolecular distance R. For large separations R, we show that the ab initio values of the leading coefficients converge to the predictions from perturbation theory, including both classical multipole polarization and dispersion effects.  相似文献   

7.
The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.g., 6-31G(*)) provides fairly reasonable intermolecular separation; (ii) geometry optimization with extended basis sets at the MP2 level underestimates the intermolecular distances compared to the reference CCSD(T) results, whereas the MP2/cc-pVTZ counterpoise-corrected optimization agrees well with the reference geometries and, therefore, is recommended as a next step for improving MP2/cc-pVTZ geometries; (iii) the stabilization energy of stacked nucleic acids base pairs depends considerably on the method used for geometry optimization, so the use of reliable geometries, such as counterpoise-corrected MP2/cc-pVTZ ones, is recommended; (iv) the density functional theory methods fail completely in locating the energy minima for stacked structures and when the geometries from MP2 calculations are used, the resulting stabilization energies are strongly underestimated; (v) the self-consistent charges-density functional tight binding method, with inclusion of the empirical dispersion energy, accurately reproduces interaction energies and geometries of dispersion-bonded (stacked) complexes; this method can thus be recommended for prescanning the potential energy surfaces of van der Waals complexes.  相似文献   

8.
Virial coefficients up to the seventh are calculated for pair potentials depending on inverse powers of separation, for inverse powers from 5 to 80. Unlike the limiting (infinite inverse power) hard-sphere potential, some virial coefficients for finite inverse power potentials are found to be negative. This makes resummation of the virial series for general inverse power potentials more difficult than that for hard spheres, and some alternative resummation methods are presented and compared. A general equation of state is proposed for fluids of particles interacting through inverse power pair potentials, for inverse powers greater than about 10. This includes the "molecular" inverse power of 12, for which the current results support and extend the results of previous studies.  相似文献   

9.
The atom-bond pairwise additive approach, recently introduced by us to describe the potential energy surface for atom-molecule cases, is extended here for the first time to molecule-molecule systems. The idea is to decompose the van der Waals interaction energy into bond-bond pair contributions. This must be considered an improvement with respect to the familiar atom-atom pairwise additive representation since, still using a simple formulation, it indirectly accounts for three body effects. Such an approach also allows to include, in a straightforward way, the effect of the bond length on the intermolecular interaction energy. Cases of study are the weakly bound complexes involving the H(2) and N(2) molecules, namely N(2)-H(2) and N(2)-N(2), here described as a single bond-bond pair. For both systems ab initio calculations and experimental molecular beam scattering data, as well as second virial coefficients, have been employed to test the accuracy of the chosen representation of the interaction and to improve the obtained potential energy surfaces. The results of this work are important also for the generalization to the cases involving molecular ions and polyatomic molecules.  相似文献   

10.
A new four-dimensional intermolecular potential-energy surface for the H(2)-CO complex is presented. The ab initio points have been computed on a five-dimensional grid including the dependence on the H-H separation (the C-O separation was fixed). The surface has then been obtained by averaging over the intramolecular vibration of H(2). The coupled-cluster supermolecular method with single, double, and noniterative triple excitations has been used to calculate the interaction energy. The correlation part of the interaction energy has been obtained from extrapolations based on calculations in a series of basis sets. An analytical fit of the ab initio potential-energy surface has the global minimum of -93.049 cm(-1) at the intermolecular separation of 7.92 bohr for the linear geometry with the C atom pointing toward the H(2) molecule. For the other linear geometry, with the O atom pointing toward H(2), the local minimum of -72.741 cm(-1) has been found for the intermolecular separation of 7.17 bohr. The potential has been used to calculate the rovibrational energy levels of the para-H(2)-CO complex. The results agree very well with those observed by McKellar [A. R. W. McKellar J. Chem. Phys. 108, 1811 (1998)]: the discrepancies are smaller than 0.1 cm(-1). The calculated dissociation energy is equal to 19.527 cm(-1) and significantly smaller than the value of 22 cm(-1) estimated from the experiment. Predictions of rovibrational energy levels for ortho-H(2)-CO have also been done and can serve as a guidance to assign recorded experimental spectra. The interaction second virial coefficient has been calculated and compared with the experimental data.  相似文献   

11.
A new four‐dimensional intermolecular potential energy surface for CS2 dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center‐of‐mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller–Plesset second‐order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug‐cc‐pVxZ, x = D, T) and corrected for the basis‐set superposition error using the full counterpoise correction method. A two‐point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole–dipole dispersion coefficient (C6) of CS2 fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well‐known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol?1 at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.  相似文献   

12.
The lateral interaction forces between phospholipids in two-dimensional arrays are fundamental to understanding membrane biophysics. In previous studies the related thermodynamic functions have been measured for spread phospholipid monolayers at the oil/water interface over a range of temperatures and densities, and the two-dimensional virial coefficients obtained. These coefficients have been computed from a model that emphasizes the head group zwitterion interactions. In this study we examine the contribution of the diglyceride portion of phospholipid molecules to the lateral intermolecular forces. Measurements of the heptane/water interfacial tension as a function of the concentration of 1,2-dipalmitoyl glycerol (DP) in the heptane were made over a range of low surface pressures at 25 degrees C. Infrared measurements on the DP solutions show that the solutions are ideal. The results are interpreted to give two-dimensional virial coefficients for the adsorbed monolayer. The second virial coefficient B2(T) for DP is +0.31 nm2/molecule, in marked contrast to the much larger positive values found for the corresponding phospholipids at the same interface and temperature, and clearly indicating an attractive component to the lateral potentials of mean force between pairs of DP molecules. The contribution of the diglyceride moiety to the pair potentials of the phospholipids thus appears to be minor but not negligible. The differences in the second virial coefficients for DP and the phospholipids are interpreted primarily in terms of the orientation of the ester carbonyl dipoles, also drawing on spectroscopic and diffraction evidence from related structures.  相似文献   

13.
14.
Time-dependent Schr?dinger equation, TDSE, simulations have been performed in order to prepare and study via MPIPS the evolution of vibrational wave packets on the ion pair electronic state potentials B'B1Sigma(u)(+) and Hh1Sigma(g)(+) of the H2 molecule. Using ab initio potential surfaces and transition moments, we present two- and three-photon excitation schemes with ultrashort pulses (tau 相似文献   

15.
A five-dimensional potential energy surface is calculated for the interaction of water and CO(2), using second-order M?ller-Plesset perturbation theory and coupled-cluster theory with single, double, and perturbative triple excitations. The correlation energy component of the potential energy surface is corrected for basis set incompleteness. In agreement with previous studies, the most negative interaction energy is calculated for a structure with C(2v) symmetry, where the oxygen atom of water is close to the carbon atom of CO(2). Second virial coefficients for the water-CO(2) pair are calculated for a range of temperatures, and their uncertainties are estimated. The virial coefficients are shown to be in close agreement with the available experimental data.  相似文献   

16.
We report two ab initio intermolecular potential energy surfaces for Ne-HCCCN using a supermolecular method. The calculations were performed at the fourth-order M?ller-Plesset (MP4) and the coupled cluster singles-and-doubles with noniterative inclusion of connected triples [CCSD(T)] levels with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ne atom facing the H atom. The two-dimensional discrete variable representation method was employed to calculate the rovibrational bound states. In addition, the microwave spectra including intensities for the ground vibrational state were predicted. The results show that the spectrum is dominated by b-type (DeltaK(a) = +/-1) transitions with very weak a-type (DeltaK(a) = 0) transitions. The calculated results at the CCSD(T) potential are in good agreement with those at MP4 potential.  相似文献   

17.
Potential energy curves for the X (1)Sigma(g) (+) ground state and Omega=0(u) (+), 1(u) valence states and dipole moments for the 0(u) (+), 1(u)-X transitions are obtained in an ab initio configuration interaction study of Cl(2) including spin-orbit coupling. In contrast to common assumptions, it is found that the B (3)Pi(0(+)u)-X transition moment strongly depends on internuclear distance, which has an important influence on the Cl(2) photodissociation. Computed energy curves and transition moments are employed to calculate the A, B, C<--X extinction coefficients, the total spectrum for the first absorption band, and the Cl(*)((2)P(1/2))/Cl((2)P(3/2)) branching ratio as a function of excitation wavelength. The calculated data are shown to be in good agreement with available experimental results.  相似文献   

18.
CHCl(3)-SO(2) association is studied by high-level quantum-chemical calculations of stationary points of the dimer electronic potential-energy hypersurface, including correlated second-order Moller-Plesset and CCSD(T) calculations with basis sets up to 6-311++G(d,p). During geometry optimization, frequency, and energy calculations, a self-written computer code embedding the GAMESS ab initio program suite applies counterpoise correction of the basis set superposition error. A CH...O hydrogen-bonded complex (DeltaE(0)=-8.73 kJmol) with a 2.4 A intermolecular H...O distance and two very weak van der Waals complexes (DeltaE(0)=-3.78 and -2.94 kJmol) are located on the counterpoise-corrected potential-energy surface. The intermolecular interactions are characterized by Kitaura-Morokuma interaction energy decompositions and Mulliken electron population analyses. The unusual hydrogen bond is distinguished by a CH-bond contraction, a pronounced enhancement of the IR intensity and a shift to higher frequency ("blueshift") of the CH-stretching vibration compared to the CHCl(3) monomer. Spectroscopy and association in liquid solution is also discussed; our results provide an alternative explanation for features in the CH-stretching vibration spectrum of chloroform dissolved in liquid sulfur dioxide which have been attributed previously to an intermolecular Fermi resonance.  相似文献   

19.
The ground state ab initio CCSD(T) potential curves using various basis sets (aug-cc-pVXZ-PP (X = D, T, Q, 5)) is obtained for the dimers of helium with IIb group metals. The effect of the position of the (mid) bond-functions on the interaction energy is discussed. A Symmetry Adapted Perturbation Theory decomposition of the interaction energy is provided and the trends in the dimer stabilizing and destabilizing contributions are depicted. The spline fitted potential curves are applied together with rigorous statistical formulae in order to obtain the transport coefficients (viscosity coefficients, diffusion coefficients) and the second virial coefficient both for pure constituents and mixtures. The obtained theoretical results are compared with available experimental data. Molecular dynamics is used to obtain reliable values of the diffusion coefficients for all the systems under study.  相似文献   

20.
A hierarchical family of five three-dimensional potential energy surfaces has been developed for the benchmark He-CO system. Four surfaces were obtained at the coupled cluster singles and doubles level of theory with a perturbational estimate of triple excitations, CCSD(T), and range in quality from the doubly augmented double-zeta basis set to the complete basis set (CBS) limit. The fifth corresponds to an approximate CCSDT/CBS surface (CCSD with iterative triples/CBS, denoted CBS+corr). The CBS limit results were obtained by pointwise basis set extrapolations of the individual counterpoise-corrected interaction energies. For each surface, over 1000 interaction energies were accurately interpolated using a reproducing kernel Hilbert space approach with an R-6+R-7 asymptotic form. In each case, both three-dimensional and effective two-dimensional surfaces were developed. In standard Jacobi coordinates, the final CBS+corr surface has a global minimum at rCO=2.1322a0,R=6.418a0, and gamma=70.84 degrees with a well depth of -22.34 cm-1. The other four surfaces have well depths ranging from -14.83 cm-1 [CCSD(T)/d-aug-cc-pVDZ] to -22.02 cm-1 [CCSD(T)/CBS]. For each of these surfaces the infrared spectrum has been accurately calculated and compared to experiment, as well as to previous theoretical and empirical surfaces. The final CBS+corr surface exhibits root-mean-square and maximum errors compared to experiment (4He) of just 0.03 and 0.04 cm-1, respectively, for all 42 transitions and is the most accurate ab initio surface to date for this system. Other quantities investigated include the interaction second virial coefficient, the integral cross sections, and thermal rate coefficients for rotational relaxation of CO by He, and rate coefficients for CO vibrational relaxation by He. All the observable quantities showed a smooth convergence with respect to the quality of the underlying interaction surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号