首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a second-order perturbation theory (PT) energy functional within density-functional theory (DFT). Based on PT with the Kohn-Sham (KS) determinant as a reference, this new ab initio exchange-correlation functional includes an exact exchange (EXX) energy in the first order and a correlation energy including all single and double excitations from the KS reference in the second order. The explicit dependence of the exchange and correlation energy on the KS orbitals in the functional fits well into our direct minimization approach for the optimized effective potential, which is a very efficient method to perform fully self-consistent calculations for any orbital-dependent functionals. To investigate the quality of the correlation functional, we have applied the method to selected atoms and molecules. For two-electron atoms and small molecules described with small basis sets, this new method provides excellent results, improving both second-order Moller-Plesset expression and any conventional DFT results significantly. For larger systems, however, it performs poorly, converging to very low unphysical total energies. The failure of PT based energy functionals is analyzed, and its origin is traced back to near degeneracy problems due to the orbital- and eigenvalue-dependent algebraic structure of the correlation functional. The failure emerges in the self-consistent approach but not in perturbative post-EXX calculations, emphasizing the crucial importance of self-consistency in testing new orbital-dependent energy functionals.  相似文献   

2.
Open-shell singlet diradicals are difficult to model accurately within conventional Kohn-Sham (KS) density-functional theory (DFT). These methods are hampered by spin contamination because the KS determinant wave function is neither a pure spin state nor an eigenfunction of the S(2) operator. Here we present a theoretical foray for using single-reference closed-shell ground states to describe diradicals by fractional-spin DFT (FS-DFT). This approach allows direct, self-consistent calculation of electronic properties using the electron density corresponding to the proper spin eigenfunction. The resulting FS-DFT approach is benchmarked against diradical singlet-triplet gaps for atoms and small molecules. We have also applied FS-DFT to the singlet-triplet gaps of hydrocarbon polyacenes.  相似文献   

3.
The DFTB method is an approximate KS-DFT scheme with an LCAO representation of the KS orbitals, which can be derived within a variational treatment of an approximate KS energy functional. But it may also be related to cellular Wigner-Seitz methods and to the Harris functional. It is an approximate method, but it avoids any empirical parametrization by calculating the Hamiltonian and overlap matrices out of DFT-derived local orbitals (atomic orbitals, AO's). The method includes ab initio concepts in relating the Kohn-Sham orbitals of the atomic configuration to a minimal basis of the localized atomic valence orbitals of the atoms. Consistent with this approximation, the Hamiltonian matrix elements can strictly be restricted to a two-center representation. Taking advantage of the compensation of the so-called "double counting terms" and the nuclear repulsion energy in the DFT total energy expression, the energy may be approximated as a sum of the occupied KS single-particle energies and a repulsive energy, which can be obtained from DFT calculations in properly chosen reference systems. This relates the method to common standard "tight-binding" (TB) schemes, as they are well-known in solid-state physics. This approach defines the density-functional tight-binding (DFTB) method in its original (non-self-consistent) version.  相似文献   

4.
Using Kohn-Sham (KS) density-functional theory, we have studied the interaction between various polyaromatic hydrocarbon molecules. The systems range from monocyclic benzene up to hexabenzocoronene (hbc). For several conventional exchange-correlation functionals total potential-energy curves of interaction of the pi-pi stacking hbc dimer are reported. It is found that all pure local density or generalized gradient approximated functionals yield qualitatively incorrect predictions regarding structure and interaction. Inclusion of a nonlocal, atom-centered correction to the KS Hamiltonian enables quantitative predictions. The computed potential-energy surfaces of interaction yield parameters for a coarse-grained potential, which can be employed to study discotic liquid-crystalline mesophases of derived polyaromatic macromolecules.  相似文献   

5.
We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals.  相似文献   

6.
It is shown from Kohn-Sham (KS) density-functional theory that in a large molecular system, the Coulomb potential, molecular electrostatic potential, and KS effective potential may exhibit an approximately homogeneous variation in space, in response to a small change of the electron number. The homogeneous variation of potentials underlies the constant interaction (CI) model of quantum dots (QDs) and is related to the delocalization and invariance of KS orbitals, the identical shift of KS levels, and a natural definition of the QD capacitance. Calculation results of a fullerene C60 and a single-walled carbon nanotube are presented. Although the homogeneity of the potential variation is not perfect, it seems to lead to fairly good approximation of the CI model to the addition energy spectra of these systems.  相似文献   

7.
A Koopmans-like approximation is introduced in the spin-polarized version of the Kohn-Sham (KS) density functional theory to obtain a relation between KS orbital energies and vertical ionization potential and electron affinity. Expressions for reactivity indexes (like electronegativity, hardness, electrophilicity, and excitation energies) include KS frontier orbital energies and additional contributions associated with the self-interaction correction. Those reactivity parameters were computed with different exchange-correlation functionals to test the approach for a set of small molecules. The results show that the present approximation provides a better way to estimate hardness, electronegativity, and electrophilicity than just the use of frontier orbital energy values. However KS HOMO and LUMO energy gap gives a better agreement with excitation energies.  相似文献   

8.
This paper presents an optimized effective potential (OEP) approach based on density functional theory (DFT) for individual excited states that implements a simple method of taking the necessary orthogonality constraints into account. The amended Kohn-Sham (KS) equations for orbitals of excited states having the same symmetry as the ground one are proposed. Using a variational principle with some orthogonality constraints, the OEP equations determining a local exchange potential for excited states are derived. Specifically, local potentials are derived whose KS determinants minimize the total energies and are simultaneously orthogonal to the determinants for states of lower energies. The parametrized form of an effective DFT potential expressed as a direct mapping of the external potential is used to simplify the OEP integral equations. A performance of the presented method is examined by exchange-only calculations of excited state energies for simple atoms and molecules.  相似文献   

9.
In this report, it is shown that the Kohn-Sham (KS) kinetic energy density (KED) contains the average local electrostatic potential (ALEP) and the average local ionization energy (ALIE); the shell structure in atomic systems is presented as one application of the KS-KED. By writing the KS-KED from the KS equations, this quantity was divided in three contributions: orbital, Coulomb, and exchange correlation. By studying several closed and open shell atoms, the shell structure was established by the maxima presented by the Coulomb contribution and the minima in the orbital contribution of the KS-KED. The exchange-correlation contribution to the KS-KED does not show maxima or minima, but this quantity shows bumps where the division between shells is expected. The results obtained in this work were compared with other shell structure indicators such as the electron localization function, the ALEP, the ALIE, and the radial distribution function. The most important result in this work is related to the fact that even when the ALEP and the ALIE functions were built with different arguments to each other, they are contained in the KS-KED. In this way, the KS-KED shows its importance to reveal the electron localization in atomic systems.  相似文献   

10.
Variational fitting gives a stationary linear-combination of atomic potentials (LCAP) approximation to the Kohn-Sham (KS) potential, V. That potential is central to density-functional theory because it generates all orbitals, occupied as well as virtual. Perturbation theory links two self-consistent field (SCF) calculations that differ by the perturbation. Using the same variational LCAP methods and basis sets in the two SCF calculations gives precise KS potentials for each order. Variational V perturbation theory, developed herein through second order, gives stationary potentials at each order and stationary even-order perturbed energies that precisely link the two SCF calculations. Iterative methods are unnecessary because the dimension of the matrix that must be inverted is the KS basis size, not the number of occupied times virtual orbitals of coupled-perturbed methods. With variational perturbation theory, the precision of derivatives and the fidelity of the LCAP KS potential are not related. Finite differences of SCF calculations allow the precision of analytic derivatives from double-precision code to be verified to roughly seven significant digits. For a simple functional, the fourth derivatives of the energy and the first and second derivative of the KS potentials with respect to orbital occupation are computed for a standard set of molecules and basis sets, with and without constraints on the fit to the KS potential. There is no significant difference between the constrained and unconstrained calculations.  相似文献   

11.
The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography.  相似文献   

12.
Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.  相似文献   

13.
14.
In contrast to the original Kohn-Sham (KS) formalism, we propose a density functional theory (DFT) with fractional orbital occupations for the study of ground states of many-electron systems, wherein strong static correlation is shown to be described. Even at the simplest level represented by the local density approximation (LDA), our resulting DFT-LDA is shown to improve upon KS-LDA for multi-reference systems, such as dissociation of H(2) and N(2), and twisted ethylene, while performing similar to KS-LDA for single-reference systems, such as reaction energies and equilibrium geometries. Because of its computational efficiency (similar to KS-LDA), this DFT-LDA is applied to the study of the singlet-triplet energy gaps (ST gaps) of acenes, which are "challenging problems" for conventional electronic structure methods due to the presence of strong static correlation effects. Our calculated ST gaps are in good agreement with the existing experimental and high-level ab initio data. The ST gaps are shown to decrease monotonically with the increase of chain length, and become vanishingly small (within 0.1 kcal/mol) in the limit of an infinitely large polyacene. In addition, based on our calculated active orbital occupation numbers, the ground states for large acenes are shown to be polyradical singlets.  相似文献   

15.
The method of Krieger, Li, and Iafrate (KLI) [Phys. Rev. A46, 5453 (1992) and A47, 165 (1993)] is employed to calculate the Kohn-Sham (KS) potential, Vκσ, for the exchange-only case in which the electron-electron interaction between “core” electrons in the Hartree-Fock exchange energy functional is treated in the local-spin-density (LSD) approximation with and without self-interaction-correction (SIC). The resulting Vκσ(r) maintains the important analytic properties exhibited by the exact KS potential. When the core is taken to include all occupied states except those in the last two occupied subshells of the atom, we find that properties strongly dependent on the valence electron states continue to be accurately approximated. In particular, when the LSDSIC approximation is employed, we find the results of self-consistent calculations of the ionization potential and electron affinity are within 0.3 mRy of the exact KS results and that the energy eigenvalue corresponding to the highest energy occupied orbital and <r2> have an average error of a few tenths of 1% for both atoms and negative ions for Z ≤ 20. Similarly, slightly less accurate results are obtained when the LSD approximation is employed. These results suggest that the KLI method may be accurately and more easily applied to multiatom systems when this additional approximation is made. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
A new method based on linear response theory is proposed for the determination of the Kohn-Sham potential corresponding to a given electron density. The method is very precise and affords a comparison between Kohn-Sham potentials calculated from correlated reference densities expressed in Slater-(STO) and Gaussian-type orbitals (GTO). In the latter case the KS potential exhibits large oscillations that are not present in the exact potential. These oscillations are related to similar oscillations in the local error function δ i (r)=(−ɛ i i (r) when SCF orbitals (either Kohn-Sham or Hartree-Fock) are expressed in terms of Gaussian basis functions. Even when using very large Gaussian basis sets, the oscillations are such that extreme care has to be exercised in order to distinguish genuine characteristics of the KS potential, such as intershell peaks in atoms, from the spurious oscillations. For a density expressed in GTOs, the Laplacian of the density will exhibit similar spurious oscillations. A previously proposed iterative local updating method for generating the Kohn-Sham potential is evaluated by comparison with the present accurate scheme. For a density expressed in GTOs, it is found to yield a smooth “average” potential after a limited number of cycles. The oscillations that are peculiar to the GTO density are constructed in a slow process requiring very many cycles. Received: 24 February 1997 / Accepted: 18 June 1997  相似文献   

17.
In solids one often starts with an ideal crystal that is studied on the atomic scale at zero temperature. The unit cell may contain several atoms (at certain positions) and is repeated with periodic boundary conditions. Quantum mechanics governs the electronic structure that is responsible for properties such as relative stability, chemical bonding, relaxation of the atoms, phase transitions, electrical, mechanical, optical or magnetic behavior, etc. Corresponding first principles calculations are mainly done within density functional theory (DFT), according to which the many-body problem of interacting electrons and nuclei is mapped to a series of one-electron equations, the so-called Kohn-Sham (KS) equations. One among the most precise schemes to solve the KS equations is the linearized-augmented-plane-wave (LAPW) method that is employed for example in the computer code WIEN2k to study crystal properties on the atomic scale (see www.wien2k.at). Nowadays such calculations can be done—on sufficiently powerful computers—for systems containing about 100 atoms per unit cell. A selection of representative examples and the references to the original literature is given.  相似文献   

18.
Towards an order-N DFT method   总被引:5,自引:0,他引:5  
One of the most important steps in a Kohn-Sham (KS) type density functional theory calculation is the construction of the matrix of the KS operator (the “Fock” matrix). It is desirable to develop an algorithm for this step that scales linearly with system size. We discuss attempts to achieve linear scaling for the calculation of the matrix elements of the exchange-correlation and Coulomb potentials within a particular implementation (the Amsterdam density functional, ADF, code) of the KS method. In the ADF scheme the matrix elements are completely determined by 3D numerical integration, the value of the potentials in each grid point being determined with the help of an auxiliary function representation of the electronic density. Nearly linear scaling for building the total Fock matrix is demonstrated for systems of intermediate size (in the order of 1000 atoms). For larger systems further development is desirable for the treatment of the Coulomb potential. Received: 30 March 1998 / Accepted: 6 July 1998 / Published online: 15 September 1998  相似文献   

19.
Spin-unrestricted Kohn-Sham (KS) solutions are constructed from accurate ab initio spin densities for the prototype doublet molecules NO(2), ClO(2), and NF(2) with the iterative local updating procedure of van Leeuwen and Baerends (LB). A qualitative justification of the LB procedure is given with a "strong" form of the Hohenberg-Kohn theorem. The calculated energies epsilon(isigma) of the occupied KS spin orbitals provide numerical support to the analogue of Koopmans' theorem in spin-density functional theory. In particular, the energies -epsilon(ibeta) of the minor spin (beta) valence orbitals of the considered doublet molecules correspond fairly well to the experimental vertical ionization potentials (VIPs) I(i) (1) to the triplet cationic states. The energy -epsilon(Halpha) of the highest occupied (spin-unpaired) alpha orbital is equal to the first VIP I(H) (0) to the singlet cationic state. In turn, the energies -epsilon(ialpha) of the major spin (alpha) valence orbitals of the closed subshells correspond to a fifty-fifty average of the experimental VIPs I(i) (1) and I(i) (0) to the triplet and singlet states. For the Li atom we find that the exact spin densities are represented by a spin-polarized Kohn-Sham system which is not in its ground state, i.e., the orbital energy of the lowest unoccupied beta spin orbital is lower than that of the highest occupied alpha spin orbital ("a hole below the Fermi level"). The addition of a magnetic field in the -z direction will shift the beta levels up so as to restore the Aufbau principle. This is an example of the nonuniqueness of the mapping of the spin density on the KS spin-dependent potentials discussed recently in the literature. The KS potentials may no longer go to zero at infinity, and it is in general the differences nu(ssigma)( infinity )-epsilon(isigma) that can be interpreted as (averages of) ionization energies. In total, the present results suggest the spin-unrestricted KS theory as a natural one-electron independent-particle model for interpretation and assignment of the experimental photoelectron spectra of open-shell molecules.  相似文献   

20.
On the example of 40 ion pairs (5 cations times 8 anions), this study demonstrates how the core-level binding energy values can be calculated and used to plot theoretical spectra at low computational cost using density functional theory methods. Three approaches for obtaining the binding energy values are based on delta Kohn–Sham (ΔKS) calculations, 1s KS orbital energies, and atomic charges. The ΔKS results show reasonable agreement with the available experimental X-ray photoelectron data. The 1s KS orbital energies correlate well with the ΔKS results. Atomic charge correlation with ΔKS is improved by accounting for the charges of neighboring atoms. Assignment of binding energies to atoms and the applicability of the mentioned methods to model systems of ionic liquids are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号