首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate an all-optical, thermally assisted technique for broad-range tuning of whispering gallery modes in microsphere resonators fabricated from an Er:Yb co-doped phosphate glass (IOG-2). The microspheres are pumped at 978 nm and the heat generated by absorption of the pump expands the cavity, thereby altering the cavity size and refractive index. We demonstrate a significant nonlinear tuning range of greater than 700 GHz of both C- and L-band cavity emissions via pumping through a tapered optical fibre. Finally, we show that large linear tuning up to ∼488 GHz is achievable if the microsphere is alternatively heated by coupling laser light into its support stem.  相似文献   

2.
We investigate theoretically the dynamics of three low-order transverse modes in a small-area vertical cavity surface emitting laser. We demonstrate the spontaneous breaking of axial symmetry of the transverse field distribution in such a device. In particular, we show that if the linewidth enhancement factor is sufficiently large dynamical regimes with broken axial symmetry can exist up to very high diffusion coefficients ~ 10 μm2/ns.  相似文献   

3.
We propose the encapsulation of bottom-gate multilayer MoS2 phototransistors with an AZ®5214E photoresist as an effective device design to enhance the optoelectronic properties of the phototransistors. The photoresist-encapsulated MoS2 phototransistors, based on mechanically exfoliated MoS2 crystals, exhibited an improved device performance. After the photoresist encapsulation, the responsivity and detectivity of the device increased by seven-fold to 3.2 × 103 A W−1 and by five-fold to 2.3 × 1012 Jones, respectively, under a 650-nm laser with an incident power density of 2.1 mW cm−2. We attribute the observed enhancement in the phototransistor performance to the enhanced electrical properties owing to the n-type doping via photoresist encapsulation. These results demonstrate that MoS2 phototransistors can achieve high performance without complicated device architecture and process, and thus, photoresist encapsulation presents an effective method for developing high-performance two-dimensional optoelectronic devices.  相似文献   

4.
We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive, high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The individual frequency stability of the diode laser after locking is independently measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of 3 × 10− 15 at 1 s, even without vibration isolation of the reference cavity.  相似文献   

5.
We propose an optical attenuator concept based on a polymer waveguide coupled to an elastomer thin film. The thickness of the elastomer layer can be controlled by Coulomb force-induced squeezing in a capacitor geometry. Thereby resonant coupling between the light modes in the waveguide and the elastomer layer is achieved. We predict close to 100% modulation contrast and about 40% transmission for an about 200 μm long device. In addition, we demonstrate experimentally a proof-of-principle of the attenuator device.  相似文献   

6.
A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ∼20 000 (ringdown time ∼20 μs) and allows recording spectra of up to 200 cavity modes (2 cm−1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ∼5×10−10 cm−1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.  相似文献   

7.
We fabricate anodized aluminum oxide (AAO) membranes with platinum (Pt) coating of various thickness ranging from 0 nm to 12 nm. We also demonstrate the tunability of membrane porosity, to add a degree of freedom in addition to the Pt coating, for optical modulation that can be used in photonic application. The reflectance measurement and its analysis are provided based on Fabry–Perot etalon optics that takes into account spectral dependence of optical absorption and loss in the AAO membrane. It is revealed that the frequency-dependent optical finesse (color purity) enhances nonlinearly with the Pt thickness, by the quantitative estimation, while the effective refractive index is substantially governed by the membrane porosity. These features can allow for the AAO membrane to be used as a dye-free color displaying film with efficient tunability of both displaying color and its color purity. In particular, the strong dependence of an effective refractive index on porosity is demonstrated such that the AAO membrane can have the effective refractive index down to about 1.2, making it a possible candidate for a single layer anti-reflection coating material deposited on optical components including low-index glass. We also fabricate, by facile dipping method, an AAO membrane whose pore size changes gradually along a direction on its surface. This intra-membrane modulation of porosity allows it to find application in an optical grating or band-pass filter whose transmission wavelength varies with position on the device surface.  相似文献   

8.
We calculated the optimal parameters of a low-Q cavity of a millimeter-wavelength continuous-wave gyrotron which ensure that the maximum efficiency is reached for a limited heat load on the cavity wall. The influence of the cavity optimization on the efficiency of energy recovery of a collector electron beam is considered. Stability of the operating mode to self-excitation of other modes is studied. Gyrotrons with radiation power 1 MW, frequency range 140–170 GHz, and operating modes TE22.6 and TE25.10 are studied as the example. The obtained results are generalized to gyrotrons with other operating modes and frequencies.  相似文献   

9.
For a laser diode array (LDA) positioned in an external cavity of a certain length, a very strong inter-emitter coupling can be established between the off-axis lateral modes of the broad-stripe emitters. Under these circumstances, the phase-locked operation of the LDA due to couplings between off-axis modes of emitters has been observed, for the first time to our knowledge. The observations suggest that phase locking of a broad-stripe LDA can be achieved among different emitter lateral modes by selecting different cavity lengths.  相似文献   

10.
11.
Yanhua Wang  Yuegang Chen  Yan Zhang  Shutian Liu 《Optik》2009,120(18):1016-1020
The light transmittance of a periodic metallic grating with varied slit widths has been investigated. The transmission peaks move to the shorter wavelength direction with an increase in the width of slits while keeping the other parameters unchanged. It was demonstrated that the slit width affects the spectral transmittance of the metal grating significantly. It was also found that the effective refractive index and cavity modes in slits are responsible for this phenomenon. Cavity modes play an important role in extraordinary transmission of the sub-wavelength aperture grating. When a complete resonant mode forms in the slits, a high transmission will appear. A wider slit results in a smaller efficient refractive index and thus affects the cavity mode in the slits. These two elements cause the transmission peaks to move to the shorter wavelength direction with widening of slits. The results obtained here may provide a useful guide to design metallic slit grating devices.  相似文献   

12.
We demonstrate optical properties of one-dimensional photonic crystals (PC), which are fabricated using high-aspect-ratio etching on a V-grooved silicon wafer. The measured transmission spectrum has an obvious band gap; the suppression is over 30 dB. The quite small insertion loss of 1.9 dB is achieved by induced coupled plasma (ICP) cryogenic etching and direct coupling to the optical fiber aligned in the V-groove. We also successfully observed peaks originating from a localized cavity mode. Such a microcavity enables control of the light, which qualifies photonic crystal as a fundamental structure of optical functional devices. These results lead to achievement of integrated Si-based photonic circuits.  相似文献   

13.
 在菲涅耳衍射公式和模耦合理论的基础上,对有相位补偿的 Talbot外腔锁相在腔内场的分布进行了数值计算。计算结果表明:理想的相位补偿元件模式选择镜能够消除由于边缘效应引起的近场幅度不均匀,而且同相模的衍射损耗非常小,能有效地起到选择同相模的作用。实用的相位补偿元件相位型光栅对近场的幅度没有影响,也能够明显地减小同相模的衍射损耗,起到选择同相模的作用。  相似文献   

14.
We present a method of generating two-mode single atom laser based on the nonresonant interaction of a three-level Λ type atom in a two-mode cavity with three strong classical driving fields. An analytical solution for this effective dynamics under the presence of the cavity losses is obtained, which allow us to analyze the entanglement properties and the photon statistics of the two cavity modes exactly. It is also shown that the possible generation of the two-mode entangled coherent states in the transient regime after the atomic measurement.  相似文献   

15.
外腔中半导体二极管激光阵列的高阶侧模锁定   总被引:4,自引:4,他引:0       下载免费PDF全文
 理论分析了外腔较短情况下,宽条半导体二极管激光阵列(LDA)高阶侧模相位锁定的可能性,观察了包含主、旁瓣结构的多侧模远场光强分布。从实验记录结果可以看出,在旁瓣中出现了标志锁相的峰、谷结构,而且该结构的调制度明显高于主瓣中的峰、谷结构的调制度,结果表明:在外腔较短情况下,LDA高阶侧模相位锁定的现象是存在的。  相似文献   

16.
In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light emitting devices based on silicon nanostructures. The performances of crystalline, amorphous and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature EL with the advantage to be formed at a temperature of only 900 °C, remarkably lower than the temperature needed for the formation of Si nanocrystals (1100 °C or higher). To improve the extraction of the light, we coupled the emitting system with a 2D photonic crystal structure properly fabricated with ULSI technology to reduce the total internal reflection of the emitted light. We demonstrate that the extraction efficiency is increased by a factor of 4. Finally, the light emission from devices based on Er-doped Si nanoclusters has been studied and in particular we have investigated the luminescence quenching processes limiting quantum efficiency in these devices. In fact the carrier injection, that determines the excitation of Er ions through electron–hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. These data are presented and the implications on the device performances discussed.  相似文献   

17.
In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide–cavity–graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide–cavity–graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide–cavity–graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.  相似文献   

18.
《Current Applied Physics》2014,14(4):608-613
This paper reports Sezawa-mode surface acoustic wave (SAW) devices with via-isolated cavity to construct the allergy biosensor. To fabricate Sezawa-mode SAW devices, the RF magnetron sputtering method for the growth of piezoelectric ZnO thin films are adopted and influences of the sputtering parameters are investigated. The optimal substrate temperature of 300 °C, RF power of 120 W and sputtering pressure of 2 Pa were used to deposit piezoelectric ZnO films with a smooth surface, uniform grain size and strongly c-axis-orientated crystallization. A back-etched SAW resonator is used in this study. The wet etching of (100)-oriented silicon wafers is used to form a back-side cavity which is critical to the formation of a hopper cavity for holding bio-analytes. The remaining membrane structure silicon thickness was 25 μm. In this report, the chrome (Cr, 12 nm)/gold (Au, 66 nm) layer was initially deposited onto the sensing area of SAW devices as the binding layer for biochemical sensor. The resonance frequency of the Sezawa-mode SAW device is 1.497 GHz. The maximum sensitivity of the Sezawa-mode is calculated to be 4.44 × 106 cm2/g for human immunoglobulin-E (IgE) detection. The stability for human IgE detection is calculated to be 80% and the variation of the stability ±3% was obtained after several tests.  相似文献   

19.
We demonstrate a new optical bistability devise by using two Fiber Bragg Gratings (FBG), in which an erbium-doped fiber (EDF) is inserted to form a nonlinear Fabry–Perot cavity (EDF FBG/F–P). The operation principle of this device is described by the resonant nonlinearity theory combining with the transfer matrix method. The optical bistability behaviors under different parameters are investigated. It shows that EDF FBG/F–P device has an evident merit in reducing the threshold switching power to 7 mW, resulting in a reduction about 6 orders, compared with that of single FBG device. Moreover, the ultra-fast response time about 35 ps is also confirmed.  相似文献   

20.
Phua PB  Lim YL 《Optics letters》2006,31(14):2148-2150
We demonstrate the coherent locking of two orthogonal polarized lasers by using polarization selective loss. The two orthogonal polarizations are locked coherently to produce a resultant polarization state that sees minimal cavity loss. In contrast to the Michelson locking schemes, our scheme has the advantage of easy tunability, which helps to routinely achieve near-perfect (>99%) combining efficiency even when the power of the two arms is highly imbalanced and is varied from a power ratio of unity to >5. We also demonstrate an interesting phenomenon in which a miniscule injection of an antiphase field component from one arm into another can significantly inhibit the locking mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号