首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The incompressible flow in the intake pipe of a laboratory-scale internal combustion engine at Reynolds numbers corresponding to realistic operating conditions was studied with the help of direct numerical simulations. The mass flow through the curved pipe remained constant and the valve was held fixed at its halfway-open position, as is typically done in steady flow engine test bench experiments for the optimization of the intake manifold. The flow features were identified as the flow evolves in the curved intake pipe and interacts with the cylindrical valve stem. The sensitivity of the flow development on the velocity profile imposed at the inflow boundary was assessed. It was found that the flow can become turbulent very quickly depending on the inflow profile imposed at the pipe inlet, even though no additional noise was added to mimic turbulent velocity fluctuations. The transition to turbulence results from competing and interacting instability mechanisms both at the inner curved part of the intake pipe and at the valve stem wake. Azimuthal variations in the local mass flow exiting the intake pipe were identified, in agreement with previously reported measurement results, which are known to play an important role in the charging motion inside the cylinder of an internal combustion engine.  相似文献   

2.
In this paper we study a turbulent pipe flow of a weakly electrical conducting fluid subjected to a homogeneous magnetic field which is applied perpendicular to the flow. This configuration forms the basis of a so-called electromagnetic induction flow meter. When the Hartmann number is small so that modification of flow by the Lorenz force can be neglected, the influence of the magnetic field results only in a spatially and temporally varying electric potential. The magnitude of the potential difference across the pipe is then proportional to the flow rate and this constitutes the principle of the flow meter. In this study the flow and electric potential are computed with help of a numerical flow simulation called Large-Eddy Simulation (LES) to which we have added an equation for the electrical potential. The results of the LES have been compared with experiments in which the electric potential is measured as a function of time at several positions on the circumference of the pipe. Both the experimental and numerical results for the mean potential at the pipe wall agree very well with an exact solution that can be obtained in this particular case of a homogeneous magnetic field. Furthermore, it is found that fluctuations in the electric potential due to the turbulence, are small compared to the velocity fluctuations. Based on the results we conclude that electrical-magnetic effects in pipe flow can be accurately computed with LES.  相似文献   

3.
Wall shear rates in large amplitude unsteady flows that cause flow reversal can be measured by using two rectangular electrodes in a sandwich arrangement. The frequency response of this sandwich probe is studied numerically. An inverse mass transfer method is applied to recover the instantaneous shear rate from the measured difference in the mass transfer rate to the two segments. Experimental results for a turbulent pipe flow with imposed large amplitude sinusoidal oscillations are used to test the method.  相似文献   

4.
This paper details the influence of the magnitude of imposed inflow fluctuations on Large Eddy Simulations of a spatially developing turbulent mixing layer originating from laminar boundary layers. The fluctuations are physically-correlated, and produced by an inflow generation technique. The imposed high-speed side boundary layer fluctuation magnitude is varied from a low-level, up to a magnitude sufficiently high that the boundary layer can be considered, in a mean sense, as nominally laminar. Cross-plane flow visualisation shows that each simulation contains streamwise vortices in the laminar and turbulent regions of the mixing layer. Statistical analysis of the secondary shear stress reveals that mixing layers originating from boundary layers with low-level fluctuations contain a spatially stationary streamwise structure. Increasing the high-speed side boundary layer fluctuation magnitude leads to a weakening of this stationary streamwise structure, or its removal from the flow entirely. The mixing layer growth rate reduces with increasing initial fluctuation level. These findings are discussed in terms of the available experimental data on mixing layers, and recommendations for both future experimental and numerical research into the mixing layer are made.  相似文献   

5.
The paper presents Direct Numerical Simulations of sinusoidal pulsating turbulent flow, at low bulk Reynolds numbers, with high frequency, in a straight pipe. Our objective is to study pulsating flow considering it as the superposition of a temporal unsteadiness on a mean current, and from this viewpoint, to decompose the flow in a mean and an oscillating part. Firstly, we examine the time-averaged statistics, which show that the parent flow retains its properties. Then, we analyze the oscillating part of the flow, and confirm the notion that for rapidly pulsating flow, the amplitude of the streamwise velocity and the phase lag at different radial locations follow the solution of the laminar Stokes problem. In addition, we find that the modulation of the turbulent fluctuations follows approximately the sinusoidal form of the imposed pulsation, and that the ratio of the frequency parameter to the amplitude of the streamwise velocity can be used as a scaling factor. We investigate the effects of the amplitude and the frequency of the imposed unsteadiness on the modulation of the time-averaged properties and the turbulence statistics, through a systematic analysis. Finally, we examine the time evolution of the mean velocity and the turbulent fluctuations. These results indicate that a lower limit for the high frequency regime can be identified, based on the level of conformity of the phase-averaged profiles on their steady-state counterparts. For very high frequencies, we find that that the flow behavior does not change, indicating the absence of an upper limit for the high frequency regime.  相似文献   

6.
Combined free and forced convection for developed flow in a curved pipe with arbitrary curvature ratio is studied numerically. The curved pipe is heated with axially uniform heat flux, while the wall temperature is maintained peripherally uniform. The buoyancy force is accounted by the Boussinesq approximation. The effects of the Dean, Prandtl, and Rayleigh numbers and especially of a wide range of curvature ratios on the flow resistance and the average heat transfer rate are presented. The significant distortion of the dividing streamline and the appearance of the secondary flow with one dominant cell for pipe flow with higher buoyancy force and curvature ratio are also discussed.  相似文献   

7.
Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.Centre National de la Recherche Scientifique. Université Joseph Fourier, Institut National Polytechnique de Grenoble.  相似文献   

8.
Differential pressure fluctuations are used to estimate flow regimes of nitrogen gas-water mixtures in a vertical pipe because the fluctuations seem to be closely connected with the flow configuration. The regimes of vertical two-phase flow are classified by the peculiar features of statistical properties of the fluctuations, which are calculated from the data of static pressures measured at four locations along the flow direction. The results show that it is possible to identify the flow pattern from the configuration of probability density functions, the order of variance and the average value of differential pressures because these statistical properties depend on a flow pattern.  相似文献   

9.
An experimental study of the instability of a flow in an axially rotating pipe is performed by means of LDV and flow visualization technique. It is found that the axial velocity of the rotating pipe flow fluctuates like a sine wave at first, then its fluctuating pattern assumes a somewhat sawtooth wave form as a spiral wave appears, which is predicted by means of linear and nonlinear stability analysis. At a certain rotation rate, the amplitude of the velocity fluctuations amounts to 30% of the axial velocity. At the down-stream section, another fluctuating component appears in the velocity, which interferes with the initially appearing component, then the fluctuation becomes one with broad-band spectral components. There is a close analogy between this spectral evolution and that of a Taylor-Couette flow. Deformation of the velocity distribution is obtained from the velocity fluctuating pattern and its phase, and the structure of the spiral wave is considered. The strength, azimuthal wavenumber and angular velocity of the spiral wave obtained from the velocity data are confirmed by flow visualization. The change of pressure loss in the rotating pipe is compared with the case without rotation.  相似文献   

10.
Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet.The Wang and Rusak(Phys. Fluids 8:1007–1016, 1996.doi:10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant,three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al.(J. Fluid Mech. 797: 284–321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. Theenergy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.  相似文献   

11.
This paper details the influence of the nature of imposed inflow fluctuations on Large Eddy Simulations of a spatially developing turbulent mixing layer originating from laminar boundary layers. A simulation with imposed white-noise random fluctuations, commonly used in numerical simulations, produces mean-flow statistics that agree well with reference experimental data. Whilst flow visualisation images show evidence for streamwise vorticity in this simulation, quantitative statistics do not reveal the presence of statistically stationary streamwise vortices. A further simulation that uses physically-correlated inflow fluctuations also produces good mean-flow statistical agreement with reference data. From secondary shear stress contours it can be inferred that this simulation does, however, predict the presence of statistically stationary streamwise vortices. The properties of the streamwise vortices are in good agreement with experimental data. The data presented here indicate that, even for initially laminar conditions, plane mixing layer simulations require accurate physically correlated inflow conditions in order to reproduce the flow features found experimentally.  相似文献   

12.
This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation.  相似文献   

13.
数值模拟了环管中内管偏心自转且公转时由轴向压力所驱动的幂律流体充分发展层流,分析了内管上的流体作用力。结果表明,内管偏心自转时流体作用力具有推动内管作和自转同向公转的效果。当只有外力矩驱动内管自转时,由于流体的作用,随内管线密度的不同,内管能达到的受力平衡态也不同:线密度较小时内管仅能在同心自转时达到受力平衡;线密度较大时内管能在作具有不变角速度和偏心率公转时达到受力平衡,且内管线密度越大,对应的受力平衡的公转的偏心率也越大。  相似文献   

14.
An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.  相似文献   

15.
利用直接数值模拟研究圆管流动中由局部壁面引入的周期性吹吸(PSB)扰动沿流向的空间发展,流动的雷诺数Re选定为3000.在临界幅值的PSB扰动下,在较短的圆管内,圆管中的扰动沿流向快速增长,在足够长的圆管内,扰动沿流向持续增长发生转捩,流动发展到湍流阶段.  相似文献   

16.
New experimental results present the effects of low-frequency vibrations in a horizontal heat pipe. The temperature difference between the evaporator and condenser of the heat pipe was measured under different heat transfer rates, filling ratios and frequencies. The low-frequency vibrations imposed a significant effect on the thermal performance as the best performance was achieved with the thermal resistance 0.05 K/W in the frequency 25 Hz.  相似文献   

17.
A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one moving part, the design is much less complicated than current active grids. Several combinations of perforated disks are investigated, and the resulting control over the turbulent intensity and spectral energy distribution is quantified over a wide range of rotation frequencies. We find that significant turbulent fluctuations are introduced mainly in the energy-containing range and partially also in the inertial subrange. These additional fluctuations represent up to 25 % of the total energy and are not caused by pulsations of the mean flow. The compact active grid will be of use where efficient mixing in limited space is required and in applications when the introduction of specific lengthscales is desirable, such as in premixed burners.  相似文献   

18.
This article presents an experimental study of the vibro-acoustic response of a pipe excited by a fully-developed turbulent air flow. First, the wall pressure field acting on the internal pipe wall is investigated. The power spectral density of the wall pressure fluctuations is analyzed after cancellation of contaminating background noise. The convection velocity and correlation lengths are calculated from measured cross-spectra, and the cross-spectra are expressed in Corcos model form. Second, the vibro-acoustic response of the pipe is analyzed by referring to the structural modes of the pipe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Long liquid slugs, with sizes reaching 500 pipe diameters or more, may form in gas–liquid horizontal pipe flow at intermediate liquid loadings. Such slugs cause serious operational upsets due to the strong fluctuations in flow supply and pressure. Therefore, predicting the transition from short (hydrodynamic) to long slug flow regimes may play a significant role in preventing or reducing the negative effects caused by the long slugs.  相似文献   

20.
Large-Eddy-Simulation of turbulent heat transfer for water flow in rotating pipe is performed, for various rotation ratios (0 ≤ N ≤ 14). The value of the Reynolds number, based on the bulk velocity and pipe diameter, is Re = 5,500. The aim of this study is to examine the effect of the rotating pipe on the turbulent heat transfer for water flow, as well as the reliability of the LES approach for predicting turbulent heat transfer in water flow. Some predictions for the case of non-rotating pipe are compared to the available results of literature for validation. To depict the influence of the rotation ratio on turbulent heat transfer, many statistical quantities are analyzed (distributions of mean temperature, rms of fluctuating temperature, turbulent heat fluxes, higher-order statistics). Some contours of instantaneous temperature fluctuations are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号